Abstract
The proliferation of sensors to capture parametric measures or event data over a myriad of networking topologies is growing exponentially to improve our daily lives. Large amounts of data must be shared on constrained network infrastructure, increasing delays and loss of valuable real-time information. Our research presents a solution for the health, security, safety, and fire domains to obtain temporally synchronous, credible and high-resolution data from sensors to maintain the temporal hierarchy of reported events. We developed a multisensor fusion framework with energy conservation via domain-specific “wake up” triggers that turn on low-power model-driven microcontrollers using machine learning (TinyML) models. We investigated optimisation techniques using anomaly detection modes to deliver real-time insights in demanding life-saving situations. Using energy-efficient methods to analyse sensor data at the point of creation, we facilitated a pathway to provide sensor customisation at the “edge”, where and when it is most needed. We present the application and generalised results in a real-life health care scenario and explain its application and benefits in other named researched domains.
Original language | English |
---|---|
Article number | 8143 |
Pages (from-to) | 1-23 |
Number of pages | 23 |
Journal | Sensors |
Volume | 22 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 Nov 2022 |
Bibliographical note
Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- TinyML
- machine learning
- edge analytics
- energy harvesting
- health care
- security
- safety
- fire safety