TY - JOUR
T1 - High-Frequency Resonance in the Gerbil Medial Superior Olive
AU - Mikiel-Hunter, Jason
AU - Kotak, Vibhakar
AU - Rinzel, John
N1 - Copyright the Author(s) 2016. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - A high-frequency, subthreshold resonance in the guinea pig medial superior olive (MSO) was recently linked to the efficient extraction of spatial cues from the fine structure of acoustic stimuli. We report here that MSO neurons in gerbil also have resonant properties and, based on our whole-cell recordings and computational modeling, that a low-voltage-gated potassium current, IKLT, underlies the resonance. We show that resonance was lost following dynamic clamp replacement of IKLT with a leak conductance and in the model when voltage-gating of IKLT was suppressed. Resonance was characterized using small amplitude sinusoidal stimuli to generate impedance curves as typically done for linear systems analysis. Extending our study into the nonlinear, voltage-dependent regime, we increased stimulus amplitude and found, experimentally and in simulations, that the subthreshold resonant frequency (242Hz for weak stimuli) increased continuously to the resonant frequency for spiking (285Hz). The spike resonance of these phasic-firing (type III excitable) MSO neurons and of the model is of particular interest also because previous studies of resonance typically involved neurons/models (type II excitable, such as the standard Hodgkin-Huxley model) that can fire tonically for steady inputs. To probe more directly how these resonances relate to MSO neurons as slope-detectors, we presented periodic trains of brief, fast-rising excitatory post-synaptic potentials (EPSCs) to the model. While weak subthreshold EPSC trains were essentially low-pass filtered, resonance emerged as EPSC amplitude increased. Interestingly, for spike-evoking EPSC trains, the threshold amplitude at spike resonant frequency (317Hz) was lower than the single ESPC threshold. Our finding of a frequency-dependent threshold for repetitive brief EPSC stimuli and preferred frequency for spiking calls for further consideration of both subthreshold and suprathreshold resonance to fast and precise temporal processing in the MSO.
AB - A high-frequency, subthreshold resonance in the guinea pig medial superior olive (MSO) was recently linked to the efficient extraction of spatial cues from the fine structure of acoustic stimuli. We report here that MSO neurons in gerbil also have resonant properties and, based on our whole-cell recordings and computational modeling, that a low-voltage-gated potassium current, IKLT, underlies the resonance. We show that resonance was lost following dynamic clamp replacement of IKLT with a leak conductance and in the model when voltage-gating of IKLT was suppressed. Resonance was characterized using small amplitude sinusoidal stimuli to generate impedance curves as typically done for linear systems analysis. Extending our study into the nonlinear, voltage-dependent regime, we increased stimulus amplitude and found, experimentally and in simulations, that the subthreshold resonant frequency (242Hz for weak stimuli) increased continuously to the resonant frequency for spiking (285Hz). The spike resonance of these phasic-firing (type III excitable) MSO neurons and of the model is of particular interest also because previous studies of resonance typically involved neurons/models (type II excitable, such as the standard Hodgkin-Huxley model) that can fire tonically for steady inputs. To probe more directly how these resonances relate to MSO neurons as slope-detectors, we presented periodic trains of brief, fast-rising excitatory post-synaptic potentials (EPSCs) to the model. While weak subthreshold EPSC trains were essentially low-pass filtered, resonance emerged as EPSC amplitude increased. Interestingly, for spike-evoking EPSC trains, the threshold amplitude at spike resonant frequency (317Hz) was lower than the single ESPC threshold. Our finding of a frequency-dependent threshold for repetitive brief EPSC stimuli and preferred frequency for spiking calls for further consideration of both subthreshold and suprathreshold resonance to fast and precise temporal processing in the MSO.
UR - http://www.scopus.com/inward/record.url?scp=84999751790&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1005166
DO - 10.1371/journal.pcbi.1005166
M3 - Article
C2 - 27832077
AN - SCOPUS:84999751790
SN - 1553-734X
VL - 12
SP - 1
EP - 23
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 11
M1 - e1005166
ER -