High-pressure stability of the fluor- and hydroxy-endmembers of pargasite and K-richterite

Stephen Foley*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

118 Citations (Scopus)


The high pressure and temperature stabilities of fluor-pargasite, fluor-K-richterite, and hydroxyK-richterite have been determined at pressures of 35 to 50 kbar pressure. Fluor-pargasite is stable to 1300°C at 35 kbar, and its thermal stability decreases sharply at higher pressures. In comparison with the hydroxypargasite endmember, it is more stable by 10-15 kbar and 250°C. Both the hydroxy- and fluor-K-richterite endmembers are stable throughout the pressure range studied, and the temperature of breakdown increases towards higher pressures. At 35 kbar fluor-K-richterite is stable to 100°C higher than hydroxy-K-richterite, and this difference increases to 200°C at 50 kbar. The differing temperature stabilities of fluor-and hydroxyamphiboles carries important implications for partial melting processes in the Earth's mantle and lower crust: the hydroxy component will enter initial melt fractions but the amphibole will remain present in the residue due to the increasing importance of the fluor-endmember. Similar differences between the melting temperatures of the F-and OH-endmembers of mica and apatite are expected. This solid-solution melting behaviour will result in a large temperature range of melting of such F+OH-bearing minerals within the mantle and will increase the pressure-temperature range of hydrous mineral breakdown in subduction zones.

Original languageEnglish
Pages (from-to)2689-2694
Number of pages6
JournalGeochimica et Cosmochimica Acta
Issue number9
Publication statusPublished - 1991
Externally publishedYes

Fingerprint Dive into the research topics of 'High-pressure stability of the fluor- and hydroxy-endmembers of pargasite and K-richterite'. Together they form a unique fingerprint.

Cite this