TY - JOUR
T1 - High-temperature electrical conductivity of the lower-mantle phase (Mg, Fe)O
AU - Wood, B. J.
AU - Nell, J.
PY - 1991
Y1 - 1991
N2 - The electrical conductivity of the lower mantle, which controls the transmission of geomagnetic signals to the Earth's surface, has been the subject of recent controversy1,2. Peyronneau and Poirier1 extrapolated high-pressure conductivity measurements of the lower-mantle assemblage (Mg, Fe)SiO3 perovskite plus (Mg, Fe)O magnesiowüstite from 673 K to lower-mantle temperatures (2,200-2,500 K) to obtain conductivities consistent with geomagnetic observations (∼ 1 S m-1 at 1,000-km depth). The high-pressure study of Li and Jeanloz2 gave conductivities several orders of magnitude lower. Here we report measurements of conductivity and thermopower of the iron-rich phase (Mg, Fe)O at high temperature (1,173-1,773 K) and controlled oxygen partial pressure (pO2). We find that pO2 has a very large influence on conductivity: at fixed temperature and pressure, changes in pO2 can vary the conductivity by 1.5 orders of magnitude within the stability field of magnesiowüstite. For plausible mantle values of pO2, temperature and bulk composition, we obtain results in good agreement with those of ref. 1, indicating that magnesiowüstite is the dominant conductor in the lower mantle and that observed upper- and lower-mantle conductivities can be produced by the same bulk composition.
AB - The electrical conductivity of the lower mantle, which controls the transmission of geomagnetic signals to the Earth's surface, has been the subject of recent controversy1,2. Peyronneau and Poirier1 extrapolated high-pressure conductivity measurements of the lower-mantle assemblage (Mg, Fe)SiO3 perovskite plus (Mg, Fe)O magnesiowüstite from 673 K to lower-mantle temperatures (2,200-2,500 K) to obtain conductivities consistent with geomagnetic observations (∼ 1 S m-1 at 1,000-km depth). The high-pressure study of Li and Jeanloz2 gave conductivities several orders of magnitude lower. Here we report measurements of conductivity and thermopower of the iron-rich phase (Mg, Fe)O at high temperature (1,173-1,773 K) and controlled oxygen partial pressure (pO2). We find that pO2 has a very large influence on conductivity: at fixed temperature and pressure, changes in pO2 can vary the conductivity by 1.5 orders of magnitude within the stability field of magnesiowüstite. For plausible mantle values of pO2, temperature and bulk composition, we obtain results in good agreement with those of ref. 1, indicating that magnesiowüstite is the dominant conductor in the lower mantle and that observed upper- and lower-mantle conductivities can be produced by the same bulk composition.
UR - http://www.scopus.com/inward/record.url?scp=0025920679&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0025920679
SN - 0028-0836
VL - 351
SP - 309
EP - 311
JO - Nature
JF - Nature
IS - 6324
ER -