Highly porous ZnO/CNT hybrid microclusters for superior UV photodetection

Xiaohu Chen, Darren Bagnall, Noushin Nasiri*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The formation of nanoscale junctions among nanoparticles in self-assembled nanostructures is crucial for improving both interfacial conductivity and structural integrity. However, the inherent reliance on weak van der Waals forces to hold nanoparticles together poses challenges in developing commercially viable devices due to their inefficient carrier transport characteristics. This study presents the successful integration of carbon nanotubes (CNTs) into highly porous nanomicrocluster arrays of ZnO, resulting in the formation of cohesive and crack-free highly porous ZnO/CNT heterojunction films. This integration marks a significant improvement in UV photodetection performance, demonstrating a record-high photocurrent to dark current ratio of 3.3 × 106 and an exceptional responsivity of 18.5 A/W at a low bias of 0.5 V and under an ultra low light density of 25 μW/cm2. These findings underscore the efficacy of this high-performance structure as a versatile and scalable platform technology for the rapid, cost-effective fabrication of hybrid photodetectors in wearable and portable devices.

[Graphic presents]

Original languageEnglish
Pages (from-to)27614-27626
Number of pages13
JournalACS Applied Materials and Interfaces
Volume16
Issue number21
DOIs
Publication statusPublished - 29 May 2024

Keywords

  • ZnO/CNT hybrid
  • carbon nanotubes
  • nanojoining
  • self-assembly
  • highly porous
  • photodetector

Fingerprint

Dive into the research topics of 'Highly porous ZnO/CNT hybrid microclusters for superior UV photodetection'. Together they form a unique fingerprint.

Cite this