Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexes

Dominik Suter, Luuk T. C. G. van Summeren, Olivier Blacque, Koushik Venkatesan

Research output: Contribution to journalArticleResearchpeer-review

Abstract

CC cyclometalated platinum(II) triplet emitters bearing electronically different N-heterocyclic carbenes - (1,3-diisopropyl-4-(trifluoromethyl)-imidazol-2-ylidene (d), 1,3-diisopropyl-benzimidazol-2-ylidene (e), and 1,3-diisopropyl-imidazol-2-ylidene (f)) - as neutral ligands and biphenyl (bph) as well as its fluorinated derivative octafluorobiphenyl (oFbph) as dianionic cyclometalating ancillary ligand were synthesized and structurally characterized by 1H, 13C, 19F, and 195Pt NMR, single crystal X-ray diffraction, and HR-ESI-MS studies. Detailed photophysical investigations carried out reveal a strong influence on the excited-state properties exerted by the electronic nature of the N-heterocyclic carbenes as well as the fluorine functional groups on the ancillary biphenyl moiety. The solid-state structures of all complexes reveal a nearly planar and slightly distorted square planar geometry around the platinum center. Introduction of fluorine groups into the ligand framework leads to a less structured emission centered at 513 nm in poly(methyl methacrylate) (PMMA) thin films, compared to the highly structured emission profile of the bph analogues. Additionally, a hypsochromic shift of approximately 10-12 nm was found in the absorption as well as in the emission profiles and is attributed to the electron deficient nature of the oFbph ligand. Three wt % of the compounds doped in PMMA exhibit photoluminescence efficiencies as high as 92% in thin films. DFT and TD-DFT calculations on selected molecules revealed the charge transfer to be an admixture of intraligand (3ILCT) and metal-to-ligand charge transfer (3MLCT) and the frontier orbitals corresponding to the emission to be mainly localized on the bph and oFbph ligands, which is consistent with the observations from the photophysical investigations. The thermal stability of the complexes evaluated by thermogravimetric analysis (TGA) shows an enhanced thermal stability for the complexes bearing fluorine functional groups.

LanguageEnglish
Pages8160-8168
Number of pages9
JournalInorganic Chemistry
Volume57
Issue number14
DOIs
Publication statusPublished - 16 Jul 2018

Fingerprint

carbenes
Platinum
platinum
Ligands
ligands
Fluorine
Bearings (structural)
fluorine
Polymethyl Methacrylate
imidazoles
polymethyl methacrylate
Discrete Fourier transforms
Functional groups
Charge transfer
Thermodynamic stability
thermal stability
charge transfer
Thin films
thin films
profiles

Cite this

Suter, Dominik ; van Summeren, Luuk T. C. G. ; Blacque, Olivier ; Venkatesan, Koushik. / Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexes. In: Inorganic Chemistry. 2018 ; Vol. 57, No. 14. pp. 8160-8168.
@article{400145100faa4f75abf8f025a495f42b,
title = "Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexes",
abstract = "CC cyclometalated platinum(II) triplet emitters bearing electronically different N-heterocyclic carbenes - (1,3-diisopropyl-4-(trifluoromethyl)-imidazol-2-ylidene (d), 1,3-diisopropyl-benzimidazol-2-ylidene (e), and 1,3-diisopropyl-imidazol-2-ylidene (f)) - as neutral ligands and biphenyl (bph) as well as its fluorinated derivative octafluorobiphenyl (oFbph) as dianionic cyclometalating ancillary ligand were synthesized and structurally characterized by 1H, 13C, 19F, and 195Pt NMR, single crystal X-ray diffraction, and HR-ESI-MS studies. Detailed photophysical investigations carried out reveal a strong influence on the excited-state properties exerted by the electronic nature of the N-heterocyclic carbenes as well as the fluorine functional groups on the ancillary biphenyl moiety. The solid-state structures of all complexes reveal a nearly planar and slightly distorted square planar geometry around the platinum center. Introduction of fluorine groups into the ligand framework leads to a less structured emission centered at 513 nm in poly(methyl methacrylate) (PMMA) thin films, compared to the highly structured emission profile of the bph analogues. Additionally, a hypsochromic shift of approximately 10-12 nm was found in the absorption as well as in the emission profiles and is attributed to the electron deficient nature of the oFbph ligand. Three wt {\%} of the compounds doped in PMMA exhibit photoluminescence efficiencies as high as 92{\%} in thin films. DFT and TD-DFT calculations on selected molecules revealed the charge transfer to be an admixture of intraligand (3ILCT) and metal-to-ligand charge transfer (3MLCT) and the frontier orbitals corresponding to the emission to be mainly localized on the bph and oFbph ligands, which is consistent with the observations from the photophysical investigations. The thermal stability of the complexes evaluated by thermogravimetric analysis (TGA) shows an enhanced thermal stability for the complexes bearing fluorine functional groups.",
author = "Dominik Suter and {van Summeren}, {Luuk T. C. G.} and Olivier Blacque and Koushik Venkatesan",
year = "2018",
month = "7",
day = "16",
doi = "10.1021/acs.inorgchem.8b00564",
language = "English",
volume = "57",
pages = "8160--8168",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "AMER CHEMICAL SOC",
number = "14",

}

Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexes. / Suter, Dominik; van Summeren, Luuk T. C. G.; Blacque, Olivier; Venkatesan, Koushik.

In: Inorganic Chemistry, Vol. 57, No. 14, 16.07.2018, p. 8160-8168.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexes

AU - Suter, Dominik

AU - van Summeren, Luuk T. C. G.

AU - Blacque, Olivier

AU - Venkatesan, Koushik

PY - 2018/7/16

Y1 - 2018/7/16

N2 - CC cyclometalated platinum(II) triplet emitters bearing electronically different N-heterocyclic carbenes - (1,3-diisopropyl-4-(trifluoromethyl)-imidazol-2-ylidene (d), 1,3-diisopropyl-benzimidazol-2-ylidene (e), and 1,3-diisopropyl-imidazol-2-ylidene (f)) - as neutral ligands and biphenyl (bph) as well as its fluorinated derivative octafluorobiphenyl (oFbph) as dianionic cyclometalating ancillary ligand were synthesized and structurally characterized by 1H, 13C, 19F, and 195Pt NMR, single crystal X-ray diffraction, and HR-ESI-MS studies. Detailed photophysical investigations carried out reveal a strong influence on the excited-state properties exerted by the electronic nature of the N-heterocyclic carbenes as well as the fluorine functional groups on the ancillary biphenyl moiety. The solid-state structures of all complexes reveal a nearly planar and slightly distorted square planar geometry around the platinum center. Introduction of fluorine groups into the ligand framework leads to a less structured emission centered at 513 nm in poly(methyl methacrylate) (PMMA) thin films, compared to the highly structured emission profile of the bph analogues. Additionally, a hypsochromic shift of approximately 10-12 nm was found in the absorption as well as in the emission profiles and is attributed to the electron deficient nature of the oFbph ligand. Three wt % of the compounds doped in PMMA exhibit photoluminescence efficiencies as high as 92% in thin films. DFT and TD-DFT calculations on selected molecules revealed the charge transfer to be an admixture of intraligand (3ILCT) and metal-to-ligand charge transfer (3MLCT) and the frontier orbitals corresponding to the emission to be mainly localized on the bph and oFbph ligands, which is consistent with the observations from the photophysical investigations. The thermal stability of the complexes evaluated by thermogravimetric analysis (TGA) shows an enhanced thermal stability for the complexes bearing fluorine functional groups.

AB - CC cyclometalated platinum(II) triplet emitters bearing electronically different N-heterocyclic carbenes - (1,3-diisopropyl-4-(trifluoromethyl)-imidazol-2-ylidene (d), 1,3-diisopropyl-benzimidazol-2-ylidene (e), and 1,3-diisopropyl-imidazol-2-ylidene (f)) - as neutral ligands and biphenyl (bph) as well as its fluorinated derivative octafluorobiphenyl (oFbph) as dianionic cyclometalating ancillary ligand were synthesized and structurally characterized by 1H, 13C, 19F, and 195Pt NMR, single crystal X-ray diffraction, and HR-ESI-MS studies. Detailed photophysical investigations carried out reveal a strong influence on the excited-state properties exerted by the electronic nature of the N-heterocyclic carbenes as well as the fluorine functional groups on the ancillary biphenyl moiety. The solid-state structures of all complexes reveal a nearly planar and slightly distorted square planar geometry around the platinum center. Introduction of fluorine groups into the ligand framework leads to a less structured emission centered at 513 nm in poly(methyl methacrylate) (PMMA) thin films, compared to the highly structured emission profile of the bph analogues. Additionally, a hypsochromic shift of approximately 10-12 nm was found in the absorption as well as in the emission profiles and is attributed to the electron deficient nature of the oFbph ligand. Three wt % of the compounds doped in PMMA exhibit photoluminescence efficiencies as high as 92% in thin films. DFT and TD-DFT calculations on selected molecules revealed the charge transfer to be an admixture of intraligand (3ILCT) and metal-to-ligand charge transfer (3MLCT) and the frontier orbitals corresponding to the emission to be mainly localized on the bph and oFbph ligands, which is consistent with the observations from the photophysical investigations. The thermal stability of the complexes evaluated by thermogravimetric analysis (TGA) shows an enhanced thermal stability for the complexes bearing fluorine functional groups.

UR - http://www.scopus.com/inward/record.url?scp=85049999984&partnerID=8YFLogxK

U2 - 10.1021/acs.inorgchem.8b00564

DO - 10.1021/acs.inorgchem.8b00564

M3 - Article

VL - 57

SP - 8160

EP - 8168

JO - Inorganic Chemistry

T2 - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 14

ER -