How well documented is Australia's flora? Understanding spatial bias in vouchered plant specimens

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Massive digitization of natural history collections (NHC) has opened the door for researchers to conduct inferential studies on the collection of biological diversity across space and time. The widespread use of NHCs in scientific research makes it essential to characterize potential sources of spatial bias. In this study, we assessed spatial patterns in records from the Australian Virtual Herbarium (AVH), based on >3 000 000 vouchered specimens of around 21 000 native plant species. The AVH is the main database for describing Australia's flora, and identifying its limitations is of paramount interest for the validity of conservation and environmental studies. We characterized how sampling effort is distributed across each Interim Bioregion of Australia (IBRA), then asked: (i) How complete are species inventories for each bioregion? We define completeness (C) as the ratio of observed to estimated species richness, using the Chao 1 estimator, (ii) How is sampling effort related to a commonly used Human Influence Index (HII)? and (iii) What is the probability that additional collections would result in the identification of previously unrecorded species in each bioregion? Sampling effort across bioregions is unequal, which partially reflects the collecting behaviour of naturalists in relation to species richness patterns. The density of records in bioregions ranges from 0.02-8.37 km-2. At the bioregional scale, completeness is generally high with 79% of bioregions estimated to have records for at least 80% of their species. Completeness is partly explained by sampling effort (r = 0.43, p = 0.01), although some bioregions (e.g. Northern Kimberley and Burt Plain) have high completeness yet relatively low sampling effort. The inventory of Hampton, however, is substantially less complete than other bioregions (C = 0.66). Bioregions with high HII consistently have high completeness, while regions with low HII span the full range of completeness values. We calculated that an additional specimen collected from a bioregion has a 0.33% (Wet Tropics) to 11.7% (Arnhem Coast) probability of representing a new species for that region. Our assessment can assist with directing future systematic survey efforts by identifying bioregions where additional surveying may result in the greatest return, in terms of increasing knowledge of species richness and diversity.

LanguageEnglish
Pages690–699
Number of pages10
JournalAustral Ecology
Volume42
Issue number6
DOIs
Publication statusPublished - Sep 2017

Fingerprint

flora
sampling
species diversity
species richness
herbarium
herbaria
species inventory
digitization
natural history
space and time
surveying
tropics
researchers
biodiversity
new species
coasts
coast
history
index

Keywords

  • atlas data
  • biodiversity informatics
  • continental flora
  • digitized specimens
  • Wallacean shortfall

Cite this

@article{d92d8a5ce0894574ba9defe12c8c3438,
title = "How well documented is Australia's flora? Understanding spatial bias in vouchered plant specimens",
abstract = "Massive digitization of natural history collections (NHC) has opened the door for researchers to conduct inferential studies on the collection of biological diversity across space and time. The widespread use of NHCs in scientific research makes it essential to characterize potential sources of spatial bias. In this study, we assessed spatial patterns in records from the Australian Virtual Herbarium (AVH), based on >3 000 000 vouchered specimens of around 21 000 native plant species. The AVH is the main database for describing Australia's flora, and identifying its limitations is of paramount interest for the validity of conservation and environmental studies. We characterized how sampling effort is distributed across each Interim Bioregion of Australia (IBRA), then asked: (i) How complete are species inventories for each bioregion? We define completeness (C) as the ratio of observed to estimated species richness, using the Chao 1 estimator, (ii) How is sampling effort related to a commonly used Human Influence Index (HII)? and (iii) What is the probability that additional collections would result in the identification of previously unrecorded species in each bioregion? Sampling effort across bioregions is unequal, which partially reflects the collecting behaviour of naturalists in relation to species richness patterns. The density of records in bioregions ranges from 0.02-8.37 km-2. At the bioregional scale, completeness is generally high with 79{\%} of bioregions estimated to have records for at least 80{\%} of their species. Completeness is partly explained by sampling effort (r = 0.43, p = 0.01), although some bioregions (e.g. Northern Kimberley and Burt Plain) have high completeness yet relatively low sampling effort. The inventory of Hampton, however, is substantially less complete than other bioregions (C = 0.66). Bioregions with high HII consistently have high completeness, while regions with low HII span the full range of completeness values. We calculated that an additional specimen collected from a bioregion has a 0.33{\%} (Wet Tropics) to 11.7{\%} (Arnhem Coast) probability of representing a new species for that region. Our assessment can assist with directing future systematic survey efforts by identifying bioregions where additional surveying may result in the greatest return, in terms of increasing knowledge of species richness and diversity.",
keywords = "atlas data, biodiversity informatics, continental flora, digitized specimens, Wallacean shortfall",
author = "Haque, {MD Mohasinul} and Nipperess, {David A.} and Gallagher, {Rachael V.} and Beaumont, {Linda J.}",
year = "2017",
month = "9",
doi = "10.1111/aec.12487",
language = "English",
volume = "42",
pages = "690–699",
journal = "Australian Journal of Ecology",
issn = "1442-9985",
publisher = "John Wiley & Sons",
number = "6",

}

How well documented is Australia's flora? Understanding spatial bias in vouchered plant specimens. / Haque, MD Mohasinul; Nipperess, David A.; Gallagher, Rachael V.; Beaumont, Linda J.

In: Austral Ecology, Vol. 42, No. 6, 09.2017, p. 690–699.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - How well documented is Australia's flora? Understanding spatial bias in vouchered plant specimens

AU - Haque, MD Mohasinul

AU - Nipperess, David A.

AU - Gallagher, Rachael V.

AU - Beaumont, Linda J.

PY - 2017/9

Y1 - 2017/9

N2 - Massive digitization of natural history collections (NHC) has opened the door for researchers to conduct inferential studies on the collection of biological diversity across space and time. The widespread use of NHCs in scientific research makes it essential to characterize potential sources of spatial bias. In this study, we assessed spatial patterns in records from the Australian Virtual Herbarium (AVH), based on >3 000 000 vouchered specimens of around 21 000 native plant species. The AVH is the main database for describing Australia's flora, and identifying its limitations is of paramount interest for the validity of conservation and environmental studies. We characterized how sampling effort is distributed across each Interim Bioregion of Australia (IBRA), then asked: (i) How complete are species inventories for each bioregion? We define completeness (C) as the ratio of observed to estimated species richness, using the Chao 1 estimator, (ii) How is sampling effort related to a commonly used Human Influence Index (HII)? and (iii) What is the probability that additional collections would result in the identification of previously unrecorded species in each bioregion? Sampling effort across bioregions is unequal, which partially reflects the collecting behaviour of naturalists in relation to species richness patterns. The density of records in bioregions ranges from 0.02-8.37 km-2. At the bioregional scale, completeness is generally high with 79% of bioregions estimated to have records for at least 80% of their species. Completeness is partly explained by sampling effort (r = 0.43, p = 0.01), although some bioregions (e.g. Northern Kimberley and Burt Plain) have high completeness yet relatively low sampling effort. The inventory of Hampton, however, is substantially less complete than other bioregions (C = 0.66). Bioregions with high HII consistently have high completeness, while regions with low HII span the full range of completeness values. We calculated that an additional specimen collected from a bioregion has a 0.33% (Wet Tropics) to 11.7% (Arnhem Coast) probability of representing a new species for that region. Our assessment can assist with directing future systematic survey efforts by identifying bioregions where additional surveying may result in the greatest return, in terms of increasing knowledge of species richness and diversity.

AB - Massive digitization of natural history collections (NHC) has opened the door for researchers to conduct inferential studies on the collection of biological diversity across space and time. The widespread use of NHCs in scientific research makes it essential to characterize potential sources of spatial bias. In this study, we assessed spatial patterns in records from the Australian Virtual Herbarium (AVH), based on >3 000 000 vouchered specimens of around 21 000 native plant species. The AVH is the main database for describing Australia's flora, and identifying its limitations is of paramount interest for the validity of conservation and environmental studies. We characterized how sampling effort is distributed across each Interim Bioregion of Australia (IBRA), then asked: (i) How complete are species inventories for each bioregion? We define completeness (C) as the ratio of observed to estimated species richness, using the Chao 1 estimator, (ii) How is sampling effort related to a commonly used Human Influence Index (HII)? and (iii) What is the probability that additional collections would result in the identification of previously unrecorded species in each bioregion? Sampling effort across bioregions is unequal, which partially reflects the collecting behaviour of naturalists in relation to species richness patterns. The density of records in bioregions ranges from 0.02-8.37 km-2. At the bioregional scale, completeness is generally high with 79% of bioregions estimated to have records for at least 80% of their species. Completeness is partly explained by sampling effort (r = 0.43, p = 0.01), although some bioregions (e.g. Northern Kimberley and Burt Plain) have high completeness yet relatively low sampling effort. The inventory of Hampton, however, is substantially less complete than other bioregions (C = 0.66). Bioregions with high HII consistently have high completeness, while regions with low HII span the full range of completeness values. We calculated that an additional specimen collected from a bioregion has a 0.33% (Wet Tropics) to 11.7% (Arnhem Coast) probability of representing a new species for that region. Our assessment can assist with directing future systematic survey efforts by identifying bioregions where additional surveying may result in the greatest return, in terms of increasing knowledge of species richness and diversity.

KW - atlas data

KW - biodiversity informatics

KW - continental flora

KW - digitized specimens

KW - Wallacean shortfall

UR - http://www.scopus.com/inward/record.url?scp=85016787180&partnerID=8YFLogxK

U2 - 10.1111/aec.12487

DO - 10.1111/aec.12487

M3 - Article

VL - 42

SP - 690

EP - 699

JO - Australian Journal of Ecology

T2 - Australian Journal of Ecology

JF - Australian Journal of Ecology

SN - 1442-9985

IS - 6

ER -