TY - JOUR
T1 - Human cerebral arteriovenous vasoactive exchange during alterations in arterial blood gases
AU - Peebles, Karen C.
AU - Richards, A. Mark
AU - Celi, Leo
AU - McGrattan, Ken
AU - Murrell, Carissa J.
AU - Ainslie, Philip N.
PY - 2008/10
Y1 - 2008/10
N2 - Cerebral blood flow (CBF) is highly regulated by changes in arterial PCO2 and arterial PO2. Evidence from animal studies indicates that various vasoactive factors, including release of norepinephrine, endothelin, adrenomedullin, C-natriuretic peptide (CNP), and nitric oxide (NO), may play a role in arterial blood gas-induced alterations in CBF. For the first time, we directly quantified exchange of these vasoactive factors across the human brain. Using the Fick principle and transcranial Doppler ultrasonography, we measured CBF in 12 healthy humans at rest and during hypercapnia (4 and 8% CO2), hypocapnia (voluntary hyperventilation), and hypoxia (12 and 10% O2). At each level, blood was sampled simultaneously from the internal jugular vein and radial artery. With the exception of CNP and NO, the simultaneous quantification of norepinephrine, endothelin, or adrenomedullin showed no cerebral uptake or release during changes in arterial blood gases. Hypercapnia, but not hypocapnia, increased CBF and caused a net cerebral release of nitrite (a marker of NO), which was reflected by an increase in the venous-arterial difference for nitrite: 57 ± 18 and 150 ± 36 μmol/l at 4% and 8% CO2, respectively (both P < 0.05). Release of cerebral CNP was also observed during changes in CO2 (hypercapnia vs. hypocapnia, P < 0.05). During hypoxia, there was a net cerebral uptake of nitrite, which was reflected by a decreased venous-arterial difference for nitrite: -96 ± 14 μmol/l at 10% O2 (P < 0.05). These data indicate that there is a differential exchange of NO across the brain during hypercapnia and hypoxia and that CNP may play a complementary role in CO2-induced CBF changes.
AB - Cerebral blood flow (CBF) is highly regulated by changes in arterial PCO2 and arterial PO2. Evidence from animal studies indicates that various vasoactive factors, including release of norepinephrine, endothelin, adrenomedullin, C-natriuretic peptide (CNP), and nitric oxide (NO), may play a role in arterial blood gas-induced alterations in CBF. For the first time, we directly quantified exchange of these vasoactive factors across the human brain. Using the Fick principle and transcranial Doppler ultrasonography, we measured CBF in 12 healthy humans at rest and during hypercapnia (4 and 8% CO2), hypocapnia (voluntary hyperventilation), and hypoxia (12 and 10% O2). At each level, blood was sampled simultaneously from the internal jugular vein and radial artery. With the exception of CNP and NO, the simultaneous quantification of norepinephrine, endothelin, or adrenomedullin showed no cerebral uptake or release during changes in arterial blood gases. Hypercapnia, but not hypocapnia, increased CBF and caused a net cerebral release of nitrite (a marker of NO), which was reflected by an increase in the venous-arterial difference for nitrite: 57 ± 18 and 150 ± 36 μmol/l at 4% and 8% CO2, respectively (both P < 0.05). Release of cerebral CNP was also observed during changes in CO2 (hypercapnia vs. hypocapnia, P < 0.05). During hypoxia, there was a net cerebral uptake of nitrite, which was reflected by a decreased venous-arterial difference for nitrite: -96 ± 14 μmol/l at 10% O2 (P < 0.05). These data indicate that there is a differential exchange of NO across the brain during hypercapnia and hypoxia and that CNP may play a complementary role in CO2-induced CBF changes.
UR - http://www.scopus.com/inward/record.url?scp=55449091249&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.90613.2008
DO - 10.1152/japplphysiol.90613.2008
M3 - Article
C2 - 18617625
AN - SCOPUS:55449091249
VL - 105
SP - 1060
EP - 1068
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
SN - 8750-7587
IS - 4
ER -