Abstract
The N 14, N 15, and C 13 hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV-) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the N 14 hyperfine interaction do not produce a satisfactory fit to the experimental NV- electron-paramagnetic-resonance data. The small anisotropic component of the NV- hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV- ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with C 13 neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest C 13 interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.
Original language | English |
---|---|
Article number | 075203 |
Journal | Physical Review B: Condensed Matter and Materials Physics |
Volume | 79 |
Issue number | 7 |
DOIs | |
Publication status | Published - 12 Feb 2009 |