Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: Chemical and isotopic analysis

L. L. Jahnke*, R. E. Summons, L. M. Dowling, K. D. Zahiralis

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    78 Citations (Scopus)

    Abstract

    A lipid analysis of the tissues of a mid-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at Δ8, Δ10, and Δ11. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol [11.0% 4α-methyl-cholesta-8(14),24-dien- 3β-ol] was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3β-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4‰ for total tissue, -60.6 and -62.4‰ for total lipids, -60.2 and -63.9‰ for phospholipid fatty acids, and -71.8 and -73.8‰ for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria (R. E. Summons, L. L. Jahnke, and Z. Roksandic, Geochim. Cosmochim. Acta 58:2853- 2863, 1994) farther supporting the conversion of the bacterial methyl-sterol pool.

    Original languageEnglish
    Pages (from-to)576-582
    Number of pages7
    JournalApplied and Environmental Microbiology
    Volume61
    Issue number2
    Publication statusPublished - 1995

    Fingerprint

    Dive into the research topics of 'Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: Chemical and isotopic analysis'. Together they form a unique fingerprint.

    Cite this