Identifying sources of environmental contamination in European honey bees (Apis mellifera) using trace elements and lead isotopic compositions

Xiaoteng Zhou, Mark Patrick Taylor*, Peter J. Davies, Shiva Prasad

*Corresponding author for this work

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Trace element concentrations (As, Mn, Pb, and Zn) and Pb isotopic compositions were analyzed in honey bees, wax, and honey along with co-located soil and dust samples from Sydney metropolitan and Broken Hill, Australia. Compared with the other trace elements, Pearson correlations show that Pb concentrations in soil and dust had the strongest relationship to corresponding values in honey bees and their products. Dust Pb was not only highly correlated to corresponding soil values (r = 0.806, p = 0.005), it was the strongest predictor of Pb concentrations in honey bees, wax, and honey (p = 0.001, 0.007, 0.017, respectively). Lead isotopic compositions (206Pb/207Pb and 208Pb/207Pb) showed that honey bees and their products from Broken Hill were nearly identical (95-98%) to the composition of the local ore body. Samples of honey bees and their products collected from background sites adjacent to national parks in Sydney had Pb isotopic compositions (206Pb/207Pb = 1.138-1.159, 208Pb/207Pb = 2.417-2.435) corresponding to local geogenic values (206Pb/207Pb = 1.123-1.176, 208Pb/207Pb = 2.413-2.500). By contrast, honey bees and their products from Sydney metropolitan (206Pb/207Pb = 1.081-1.126, 208Pb/207Pb = 2.352-2.408) were similar to aerosols measured during the period of leaded petrol use (206Pb/207Pb = 1.067-1.148, 208Pb/207Pb = 2.341-2.410). These measurements show Pb concentrations and its isotopic compositions of honey bees, and their products can be used to trace both legacy and contemporary environmental contamination, particularly where sources are well documented. Moreover, this study demonstrates that legacy Pb emissions continue to be remobilized in dust, contaminating both food and ecological systems.

Original languageEnglish
Pages (from-to)991-1001
Number of pages11
JournalEnvironmental Science and Technology
Volume52
Issue number3
DOIs
Publication statusPublished - 6 Feb 2018

Fingerprint Dive into the research topics of 'Identifying sources of environmental contamination in European honey bees (Apis mellifera) using trace elements and lead isotopic compositions'. Together they form a unique fingerprint.

  • Cite this