Imaging exoplanets with nulling interferometry using integrated-photonics: the GLINT project

M. A. Martinod, B. Norris, S. Gross, A. Arriola, T. Gretzinger, M. Withford, T. Lagadec, P. Tuthill

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

1 Citation (Scopus)
81 Downloads (Pure)

Abstract

As confirmed exoplanets climb into the thousands, the era of exoplanets discovery is giving way to exoplanet characterization. The most desirable scenario is one where the exoplanet can be directly imaged. Direct imaging not only delivers orbital parameters, but also yields the chemical composition of the atmosphere. The potential for habitable zone exoplanets to exhibit biosignatures in such data from a visionary future instrument drives intense interest. However, this requires to simultaneously reach extremely high star-to-planet contrast (from 104 to 108) and extremely high angular resolution (around and below the diffraction limit). Accomplishing all this through the atmosphere blurred by turbulence remains a critical challenge, yet it is one that nulling interferometry in combination with extreme adaptive optics aims to meet. This technique overcomes the contrast problem by removing the starlight with destructive interference, permitting the faint light coming from the planet to remain. In this paper, we present the latest evolution of nulling interferometry instrumentation: the integrated- photonic nuller. It allows spatial filtering, multiple simultaneous baselines, simultaneous photometric channels and simultaneous measurement of the "nulled" signal (the light emitted from the planet after cancelling the starlight) as well as the "anti-nulled" signal (the channel containing the redirected starlight). Exploiting these fundamental optical principles, the delivery of imaging and differential spectroscopy of exoplanetary systems becomes possible. This paper describes a pathfinder that has implemented these ideas into a robust and compact photonic-chip platform known as the GLINT (Guided-Light Interferometric Nulling Technology) project.

Original languageEnglish
Title of host publicationAdvances in Optical Astronomical Instrumentation 2019
EditorsSimon Ellis, Céline d'Orgeville
Place of PublicationBellingham, Washington
PublisherSPIE
Pages1-2
Number of pages2
ISBN (Electronic)9781510631472
ISBN (Print)9781510631465
DOIs
Publication statusPublished - 3 Jan 2020
EventAdvances in Optical Astronomical Instrumentation 2019 - Melbourne, Australia
Duration: 9 Dec 201912 Dec 2019

Publication series

NameProceedings of SPIE
PublisherSPIE
Volume11203
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceAdvances in Optical Astronomical Instrumentation 2019
Country/TerritoryAustralia
CityMelbourne
Period9/12/1912/12/19

Bibliographical note

Copyright 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Fingerprint

Dive into the research topics of 'Imaging exoplanets with nulling interferometry using integrated-photonics: the GLINT project'. Together they form a unique fingerprint.

Cite this