Impact of common genomic variants on melanoma risk prediction

Anne E. Cust, Minh Bui, Elizabeth A. Holland, Chris Goumas, Helen Schmid, Graham Giles, Joanne Aitken, Richard Kefford, John Hopper, Graham J. Mann, Mark Jenkins

Research output: Contribution to journalMeeting abstract

Abstract

Background: Genome-wide association studies have identified numerous common genomic variants associated with increased susceptibility to melanoma, but there is limited knowledge about the utility of adding them to risk prediction models for melanoma.

Aim: To evaluate the contribution of common genomic variants to melanoma risk prediction, among young Australian adults.

Methods: The sample included 552 cases with invasive cutaneous melanoma diagnosed between ages 18–39 years and 405 controls from an Australian population-based, case-control-family study. MC1R genotype was sequenced, and through a genome-wide association study we obtained genotype data for single nucleotide polymorphisms from 18 selected gene regions. Measures of discriminatory accuracy included the area under receiver operating characteristic curves (AUC) and net reclassification improvement (NRI), calculated based on predicted probabilities of melanoma from unconditional logistic regression models. We used 10-fold cross-validation and bootstrap methods to assess internal validation.

Results: Compared to a demographic model containing age, sex and city of recruitment (AUC 0.69; 95% CI 0.65–0.72), the combined contribution to the AUC of common genomic variants was the same as that contributed from traditional self-reported risk factors for melanoma (UV exposure, pigmentation phenotype, nevi, etc) – both AUCs increased to 0.77 (95% CI 0.74–0.80). An inclusive model containing demographic, genetic and non-genetic (traditional) risk factors had an AUC of 0.81 (95% CI 0.78–0.84). Inclusion of genomic variants in the multivariate model improved the quartile classification of predicted risk (NRI) by a net 17% (95% CI 9–24) compared to the non-genetic (traditional) model.

Conclusions: Our results suggest that common genomic variants could considerably improve risk prediction models for early-onset melanoma, and may have a role in primary prevention of melanoma. We are commencing pilot studies to translate these findings into potential cancer prevention strategies in general practice and in the community.
Original languageEnglish
Article number121
Pages (from-to)114-114
Number of pages1
JournalAsia-Pacific Journal of Clinical Oncology
Volume10
Issue number8
Early online date19 Nov 2014
DOIs
Publication statusPublished - Dec 2014
EventClinical Oncological Society of Australia Annual Scientific Meeting (41st : 2014) - Melbourne, Australia
Duration: 2 Dec 20144 Dec 2014

Fingerprint

Dive into the research topics of 'Impact of common genomic variants on melanoma risk prediction'. Together they form a unique fingerprint.

Cite this