TY - JOUR
T1 - Impact of dark annealing on the kinetics of light- and elevated-temperature-induced degradation
AU - Liu, Shaoyang
AU - Payne, David
AU - Vargas Castrillon, Carlos
AU - Chen, Daniel
AU - Kim, Moonyong
AU - Sen, Chandany
AU - Varshney, Utkarshaa
AU - Hameiri, Ziv
AU - Chan, Catherine
AU - Abbott, Malcolm
AU - Wenham, Stuart
PY - 2018/11
Y1 - 2018/11
N2 - Light- and elevated-temperature-induced degradation (LeTID) has been shown to have a significant detrimental impact on p-type multicrystalline silicon solar cells and, in particular, on passivated emitter and rear cells. Previous studies have shown that defect kinetics can be modulated for samples that are dark annealed prior to light soaking at elevated temperature. In this work, we show that while short annealing durations help accelerate both degradation and recovery rates to different extents, extended annealing instead instigates a retarding effect. Our results confirm that thermally induced degradation and regeneration mechanisms can be observed during dark annealing. The results also suggest that the response to this yet undetermined defect mechanism not only depends on the initial dark annealing temperature, but it is also highly dependent on the stage of the dark annealing degradation and regeneration cycle reached before beginning light soaking. Finally, we propose a refined model of three generalized modes to describe the changes in LeTID kinetics after dark annealing.
AB - Light- and elevated-temperature-induced degradation (LeTID) has been shown to have a significant detrimental impact on p-type multicrystalline silicon solar cells and, in particular, on passivated emitter and rear cells. Previous studies have shown that defect kinetics can be modulated for samples that are dark annealed prior to light soaking at elevated temperature. In this work, we show that while short annealing durations help accelerate both degradation and recovery rates to different extents, extended annealing instead instigates a retarding effect. Our results confirm that thermally induced degradation and regeneration mechanisms can be observed during dark annealing. The results also suggest that the response to this yet undetermined defect mechanism not only depends on the initial dark annealing temperature, but it is also highly dependent on the stage of the dark annealing degradation and regeneration cycle reached before beginning light soaking. Finally, we propose a refined model of three generalized modes to describe the changes in LeTID kinetics after dark annealing.
UR - http://www.scopus.com/inward/record.url?scp=85052884833&partnerID=8YFLogxK
U2 - 10.1109/JPHOTOV.2018.2866325
DO - 10.1109/JPHOTOV.2018.2866325
M3 - Article
AN - SCOPUS:85052884833
SN - 2156-3381
VL - 8
SP - 1494
EP - 1502
JO - IEEE Journal of Photovoltaics
JF - IEEE Journal of Photovoltaics
IS - 6
ER -