TY - JOUR
T1 - Improved protection against disseminated tuberculosis by Mycobacterium bovis bacillus Calmette-Guérin secreting murine GM-CSF is associated with expansion and activation of APCs
AU - Ryan, Anthony A.
AU - Wozniak, Teresa M.
AU - Shklovskaya, Elena
AU - O'Donnell, Michael A.
AU - De St Groth, Barbara Fazekas
AU - Britton, Warwick J.
AU - Triccas, James A.
PY - 2007/12/15
Y1 - 2007/12/15
N2 - Modulating the host-immune response by the use of recombinant vaccines is a potential strategy to improve protection against microbial pathogens. In this study, we sought to determine whether secretion of murine GM-CSF by the bacillus Calmette-Guérin (BCG) vaccine influenced protective immunity against Mycobacterium tuberculosis. BCG-derived GM-CSF stimulated the in vitro generation of functional APCs from murine bone marrow precursors, as demonstrated by the infection-induced secretion of IL-12 by differentiated APCs, and the ability of these cells to present Ag to mycobacterium-specific T cells. Mice vaccinated with BCG-secreting murine GM-CSF (BCG:GM-CSF) showed increased numbers of CD11c+MHCII+ and CD11c-CD11b +F480+ cells compared with those vaccinated with control BCG, and this effect was most apparent in the draining lymph nodes at 7 and 14 days postvaccination. Vaccination with BCG:GM-CSF also resulted in enhanced expression of costimulatory molecules on migratory dendritic cells in the draining lymph nodes. The increased APC number was associated with an increase in the frequency of anti-mycobacterial IFN-γ-secreting T cells generated after BCG:GM-CSF vaccination compared with vaccination with control BCG, and this effect was sustained up to 17 wk in the spleens of immunized mice. Vaccination with BCG:GM-CSF resulted in an ∼10-fold increase in protection against disseminated M. tuberculosis infection compared with control BCG. This study demonstrates the potential of BCG-secreting immunostimulatory molecules as vaccines to protect against tuberculosis and suggests BCG:GM-CSF merits further appraisal as a candidate to control M. tuberculosis infection in humans.
AB - Modulating the host-immune response by the use of recombinant vaccines is a potential strategy to improve protection against microbial pathogens. In this study, we sought to determine whether secretion of murine GM-CSF by the bacillus Calmette-Guérin (BCG) vaccine influenced protective immunity against Mycobacterium tuberculosis. BCG-derived GM-CSF stimulated the in vitro generation of functional APCs from murine bone marrow precursors, as demonstrated by the infection-induced secretion of IL-12 by differentiated APCs, and the ability of these cells to present Ag to mycobacterium-specific T cells. Mice vaccinated with BCG-secreting murine GM-CSF (BCG:GM-CSF) showed increased numbers of CD11c+MHCII+ and CD11c-CD11b +F480+ cells compared with those vaccinated with control BCG, and this effect was most apparent in the draining lymph nodes at 7 and 14 days postvaccination. Vaccination with BCG:GM-CSF also resulted in enhanced expression of costimulatory molecules on migratory dendritic cells in the draining lymph nodes. The increased APC number was associated with an increase in the frequency of anti-mycobacterial IFN-γ-secreting T cells generated after BCG:GM-CSF vaccination compared with vaccination with control BCG, and this effect was sustained up to 17 wk in the spleens of immunized mice. Vaccination with BCG:GM-CSF resulted in an ∼10-fold increase in protection against disseminated M. tuberculosis infection compared with control BCG. This study demonstrates the potential of BCG-secreting immunostimulatory molecules as vaccines to protect against tuberculosis and suggests BCG:GM-CSF merits further appraisal as a candidate to control M. tuberculosis infection in humans.
UR - http://www.scopus.com/inward/record.url?scp=40049100093&partnerID=8YFLogxK
M3 - Article
C2 - 18056388
AN - SCOPUS:40049100093
SN - 0022-1767
VL - 179
SP - 8418
EP - 8424
JO - Journal of Immunology
JF - Journal of Immunology
IS - 12
ER -