Improved techniques for preparing eigenstates of fermionic Hamiltonians

Dominic W. Berry, Mária Kieferová, Artur Scherer, Yuval R. Sanders, Guang Hao Low, Nathan Wiebe, Craig Gidney, Ryan Babbush

    Research output: Contribution to journalArticlepeer-review

    50 Citations (Scopus)
    33 Downloads (Pure)

    Abstract

    Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions and material properties and is one of the most anticipated applications of quantum computing. We present three techniques for reducing the cost of preparing fermionic Hamiltonian eigenstates using phase estimation. First, we report a polylogarithmic-depth quantum algorithm for antisymmetrizing the initial states required for simulation of fermions in first quantization. This is an exponential improvement over the previous state-of-the-art. Next, we show how to reduce the overhead due to repeated state preparation in phase estimation when the goal is to prepare the ground state to high precision and one has knowledge of an upper bound on the ground state energy that is less than the excited state energy (often the case in quantum chemistry). Finally, we explain how one can perform the time evolution necessary for the phase estimation based preparation of Hamiltonian eigenstates with exactly zero error by using the recently introduced qubitization procedure.
    Original languageEnglish
    Article number22
    Pages (from-to)1-7
    Number of pages7
    Journalnpj quantum information
    Volume4
    DOIs
    Publication statusPublished - 2 May 2018

    Bibliographical note

    Copyright The Author(s) 2018. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

    Fingerprint

    Dive into the research topics of 'Improved techniques for preparing eigenstates of fermionic Hamiltonians'. Together they form a unique fingerprint.

    Cite this