Improving data acquisition speed and accuracy in sport using neural networks

Christopher Papic, Ross H. Sanders, Roozbeh Naemi, Marc Elipot, Jordan Andersen

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


Video analysis is used in sport to derive kinematic variables of interest but often relies on time-consuming tracking operations. The purpose of this study was to determine speed, accuracy and reliability of 2D body landmark digitisation by a neural network (NN), compared with manual digitisation, for the glide phase in swimming. Glide variables including glide factor; instantaneous hip angles, trunk inclines and horizontal velocities were selected as they influence performance and are susceptible to digitisation propagation error. The NN was “trained” on 400 frames of 2D glide video from a sample of eight elite swimmers. Four glide trials of another swimmer were used to test agreement between the NN and a manual operator for body marker position data of the knee, hip and shoulder, and the effect of digitisation on glide variables. The NN digitised body landmarks 233 times faster than the manual operator, with digitising root-mean-square-error of ~4-5 mm. High accuracy and reliability was found between body position and glide variable data between the two methods with relative error ≤5.4% and correlation coefficients >0.95 for all variables. NNs could be applied to greatly reduce the time of kinematic analysis in sports and facilitate rapid feedback of performance measures.
Original languageEnglish
Pages (from-to)513-522
Number of pages10
JournalJournal of Sports Sciences
Issue number5
Early online date14 Oct 2020
Publication statusPublished - Mar 2021
Externally publishedYes


  • Swimming
  • digitisation
  • video analysis
  • performance analysis
  • applied biomechanics


Dive into the research topics of 'Improving data acquisition speed and accuracy in sport using neural networks'. Together they form a unique fingerprint.

Cite this