In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell

Alexandra Friedrich*, Björn Winkler, Lkhamsuren Bayarjargal, Erick A. Juarez Arellano, Wolfgang Morgenroth, Jasmin Biehler, Florian Schröder, Jinyuan Yan, Simon M. Clark

*Corresponding author for this work

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal β-Ta2Nand orthorhombic η-Ta2N3, whichwas the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of ε-TaN, ∂-TaN, δ-TaN, Ta3N5-I or Ta 3N5-II, which was predicted to be the stable phase at P > 17 GPa and T = 2800 K, at the P, T-conditions of this experiment. The bulk modulus of η-Ta2N3 was determined to be B0 = 319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B0 = 348.0(9) GPa for a 2nd-order fit or B0 = 339(1) GPa and B′ = 4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.

Original languageEnglish
Pages (from-to)5-12
Number of pages8
JournalJournal of Alloys and Compounds
Volume502
Issue number1
DOIs
Publication statusPublished - 16 Jul 2010
Externally publishedYes

Fingerprint Dive into the research topics of 'In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell'. Together they form a unique fingerprint.

Cite this