TY - JOUR
T1 - Incorporating future climate uncertainty into the identification of climate change refugia for threatened species
AU - Beaumont, Linda J.
AU - Esperón-Rodríguez, Manuel
AU - Nipperess, David A.
AU - Wauchope-Drumm, Mareshell
AU - Baumgartner, John B.
PY - 2019/9
Y1 - 2019/9
N2 - Climate change presents a substantial threat to species unable to keep pace via migration or adaptation. In-situ climate refugia, areas currently occupied by a species and that remain suitable in the future, will be vital for species with dispersal limitations. Ex-situ refugia, areas beyond species' current ranges that remain suitable, may facilitate range shifts or provide options for translocation. Assessing both refugia is a conservation priority. Here, we identify refugia for 319 species threatened in New South Wales, using four plausible scenarios describing futures that are Warmer/Wetter, Warmer/Drier, Hotter/Wetter and Hotter/Little Precipitation change, relative to the present. Using Maxent, we identify (a) in-situ refugia for each species under each scenario; (b) regions of consensus – areas projected as in-situ refugia across all scenarios; (c) hotspots of in-situ refugia (regions suitable for >1 species); and (d) regions of consensus for ex-situ refugia. Species were categorised based on the extent of in- and ex-situ refugia. By 2070, refugia will likely be broadest, and narrowest, under the Warmer/Wetter and Hotter/Wetter scenarios, respectively. East coast regions currently suitable for multiple species are unlikely to remain as hotspots. Most species (65%) are projected to have limited regions of consensus for either refugia. Translocation should be explored for species with little-to-no in-situ refugia, but for which ex-situ refugia exist. Management of existing populations will be critical for species with in-situ refugia but limited ex-situ. We highlight how management decisions based on agreement across climate scenarios can be made, irrespective of uncertainty about the magnitude of climate change.
AB - Climate change presents a substantial threat to species unable to keep pace via migration or adaptation. In-situ climate refugia, areas currently occupied by a species and that remain suitable in the future, will be vital for species with dispersal limitations. Ex-situ refugia, areas beyond species' current ranges that remain suitable, may facilitate range shifts or provide options for translocation. Assessing both refugia is a conservation priority. Here, we identify refugia for 319 species threatened in New South Wales, using four plausible scenarios describing futures that are Warmer/Wetter, Warmer/Drier, Hotter/Wetter and Hotter/Little Precipitation change, relative to the present. Using Maxent, we identify (a) in-situ refugia for each species under each scenario; (b) regions of consensus – areas projected as in-situ refugia across all scenarios; (c) hotspots of in-situ refugia (regions suitable for >1 species); and (d) regions of consensus for ex-situ refugia. Species were categorised based on the extent of in- and ex-situ refugia. By 2070, refugia will likely be broadest, and narrowest, under the Warmer/Wetter and Hotter/Wetter scenarios, respectively. East coast regions currently suitable for multiple species are unlikely to remain as hotspots. Most species (65%) are projected to have limited regions of consensus for either refugia. Translocation should be explored for species with little-to-no in-situ refugia, but for which ex-situ refugia exist. Management of existing populations will be critical for species with in-situ refugia but limited ex-situ. We highlight how management decisions based on agreement across climate scenarios can be made, irrespective of uncertainty about the magnitude of climate change.
KW - climate change
KW - climate change refugia
KW - habitat suitability models
KW - Maxent
KW - Saving our Species
KW - translocation
KW - vulnerability
UR - http://www.scopus.com/inward/record.url?scp=85068790562&partnerID=8YFLogxK
U2 - 10.1016/j.biocon.2019.07.013
DO - 10.1016/j.biocon.2019.07.013
M3 - Article
AN - SCOPUS:85068790562
SN - 0006-3207
VL - 237
SP - 230
EP - 237
JO - Biological Conservation
JF - Biological Conservation
ER -