TY - JOUR
T1 - Induction of sublethal oxidative stress on human sperm before cryopreservation
T2 - a time-dependent response in post-thawed sperm parameters
AU - Hezavehei, Maryam
AU - Kouchesfahani, Homa Mohseni
AU - Shahverdi, Abdolhossein
AU - Sharafi, Mohsen
AU - Salekdeh, Ghasem Hosseini
AU - Eftekhari-Yazdi, Poopak
PY - 2019
Y1 - 2019
N2 - Objective: A recent innovative approach, based on induction of sublethal oxidative stress to enhance sperm cryosurvival, has been applied before sperm cryopreservation. The purpose of this study was to investigate the effects of different induction times of sublethal oxidative stress before cryopreservation on human post-thawed sperm quality. Materials and Methods: In this experimental study, we selected semen samples (n=20) from normozoospermic men according to 2010 World Health Organization (WHO) guidelines. After processing the samples by the density gradient method, we divided each sample into 5 experimental groups: fresh, control freezing, and 3 groups exposed to 0.01 μM sodium nitroprusside (SNP) [nitric oxide (NO) donor] for 30 (T30), 60 (T60), or 90 minutes (T90) at 37C and 5% CO2 before cryopreservation. Motion characteristics [computer-assisted sperm analyser], viability, apoptosis [annexin V/propidium iodide (PI) assay], DNA fragmentation [sperm chromatin structure assay (SCSA)], and caspase 3 activity (FLICA Caspase Detection Kit) were assessed after thawing. The results were analysed by using one-way ANOVA and Tukey’s test. The means were significantly different at P<0.05. Results: Cryopreservation significantly decreased sperm viability and motility parameters, and increased the percentage of apoptosis, caspase 3 activity, and DNA fragmentation (P<0.01) compared to the fresh group. The T60 group had a higher significant percentage of total motility (TM) and progressive motility compared with other cryopreserved groups (P<0.05). We observed a significantly lower percentage of apoptotic rate and caspase 3 activity in the T60 group compared to the other cryopreserved groups (P<0.05). DNA integrity was not significantly affected by this time of sublethal stress induction (P>0.05). Conclusion: Our results have demonstrated that the application of sublethal oxidative stress by using 0.01 μM NO for 60 minutes before the freezing process can be a beneficial approach to improve post-thawed human sperm quality.
AB - Objective: A recent innovative approach, based on induction of sublethal oxidative stress to enhance sperm cryosurvival, has been applied before sperm cryopreservation. The purpose of this study was to investigate the effects of different induction times of sublethal oxidative stress before cryopreservation on human post-thawed sperm quality. Materials and Methods: In this experimental study, we selected semen samples (n=20) from normozoospermic men according to 2010 World Health Organization (WHO) guidelines. After processing the samples by the density gradient method, we divided each sample into 5 experimental groups: fresh, control freezing, and 3 groups exposed to 0.01 μM sodium nitroprusside (SNP) [nitric oxide (NO) donor] for 30 (T30), 60 (T60), or 90 minutes (T90) at 37C and 5% CO2 before cryopreservation. Motion characteristics [computer-assisted sperm analyser], viability, apoptosis [annexin V/propidium iodide (PI) assay], DNA fragmentation [sperm chromatin structure assay (SCSA)], and caspase 3 activity (FLICA Caspase Detection Kit) were assessed after thawing. The results were analysed by using one-way ANOVA and Tukey’s test. The means were significantly different at P<0.05. Results: Cryopreservation significantly decreased sperm viability and motility parameters, and increased the percentage of apoptosis, caspase 3 activity, and DNA fragmentation (P<0.01) compared to the fresh group. The T60 group had a higher significant percentage of total motility (TM) and progressive motility compared with other cryopreserved groups (P<0.05). We observed a significantly lower percentage of apoptotic rate and caspase 3 activity in the T60 group compared to the other cryopreserved groups (P<0.05). DNA integrity was not significantly affected by this time of sublethal stress induction (P>0.05). Conclusion: Our results have demonstrated that the application of sublethal oxidative stress by using 0.01 μM NO for 60 minutes before the freezing process can be a beneficial approach to improve post-thawed human sperm quality.
KW - Cryotolerance
KW - Freezing
KW - Nitric oxide
KW - Preconditioning
KW - Sperm
UR - http://www.scopus.com/inward/record.url?scp=85054260332&partnerID=8YFLogxK
U2 - 10.22074/cellj.2019.5639
DO - 10.22074/cellj.2019.5639
M3 - Article
C2 - 30124000
AN - SCOPUS:85054260332
SN - 2228-5806
VL - 20
SP - 537
EP - 543
JO - Cell Journal
JF - Cell Journal
IS - 4
ER -