Influence of Wolf–Rayet stars on surrounding star-forming molecular clouds

T. Baug, Richard de Grijs, L. K. Dewangan, Gregory J. Herczeg, D. K. Ojha, Ke Wang, Licai Deng, B. C. Bhatt

Research output: Contribution to journalArticle

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

We investigate the influence of Wolf–Rayet (W-R) stars on their surrounding star-forming molecular clouds. We study five regions containing W-R stars in the inner Galactic plane (l ∼ [14°–52°]), using multiwavelength data from near-infrared to radio wavelengths. Analysis of ¹³CO line data reveals that these W-R stars have developed gas-deficient cavities in addition to molecular shells with expansion velocities of a few kilometers per second. The pressure owing to stellar winds primarily drives these expanding shells and sweeps up the surrounding matter to distances of a few parsecs. The column densities of shells are enhanced by a minimum of 14% for one region to a maximum of 88% for another region with respect to the column densities within their central cavities. No active star formation—including molecular condensations, protostars, or ionized gas—is found inside the cavities, whereas such features are observed around the molecular shells. Although the expansion of ionized gas is considered an effective mechanism to trigger star formation, the dynamical ages of the H ii regions in our sample are generally not sufficiently long to do so efficiently. Overall, our results hint at the possible importance of negative W-R wind-driven feedback on the gas-deficient cavities, where star formation is quenched as a consequence. In addition, the presence of active star formation around the molecular shells indicates that W-R stars may also assist in accumulating molecular gas, and that they could initiate star formation around those shells.
Original languageEnglish
Article number68
Pages (from-to)1-24
Number of pages24
JournalAstrophysical Journal
Volume885
Issue number1
DOIs
Publication statusPublished - 1 Nov 2019

Bibliographical note

Copyright 2019 The American Astronomical Society. First published in the Astrophysical Journal, 885(1), 68, 2019, published by IOP Publishing. The original publication is available at http://www.doi.org/10.3847/1538-4357/ab46be. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • HII regions
  • ISM: clouds
  • ISM: kinematics and dynamics
  • stars: formation
  • stars: pre-main sequence
  • stars: Wolf–Rayet
  • stars: Wolf-Rayet

Fingerprint Dive into the research topics of 'Influence of Wolf–Rayet stars on surrounding star-forming molecular clouds'. Together they form a unique fingerprint.

Cite this