TY - JOUR
T1 - Inhibition of Glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in Apolipoprotein E-/- mice and rabbits Fed a high-fat and -cholesterol diet
AU - Chatterjee, Subroto
AU - Bedja, Djahida
AU - Mishra, Sumita
AU - Amuzie, Christine
AU - Avolio, Alberto
AU - Kass, David A.
AU - Berkowitz, Dan
AU - Renehan, Mark
PY - 2014/6/10
Y1 - 2014/6/10
N2 - Background-Glycosphingolipids, integral components of the cell membrane, have been shown to serve as messengers, transducing growth factor-initiated phenotypes. Here, we have examined whether inhibition of glycosphingolipid synthesis could ameliorate atherosclerosis and arterial stiffness in transgenic mice and rabbits. Methods and Results-Apolipoprotein E-/-mice (12 weeks of age; n=6) were fed regular chow or a Western diet (1.25% cholesterol, 2% fat). Mice were fed 5 or 10 mg/kg of an inhibitor of glycosphingolipid synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), solubilized in vehicle (5% Tween-80 in PBS); the placebo group received vehicle only. At 20 and 36 weeks of age, serial echocardiography was performed to measure aortic intima-media thickening. Aortic pulse-wave velocity measured vascular stiffness. Feeding mice a Western diet markedly increased aortic pulse-wave velocity, intima-media thickening, oxidized low-density lipoprotein, Ca2+ deposits, and glucosylceramide and lactosylceramide synthase activity. These were dose-dependently decreased by feeding D-PDMP. In liver, D-PDMP decreased cholesterol and triglyceride levels by raising the expression of SREBP2, low-density lipoprotein receptor, HMGCo-A reductase, and the cholesterol efflux genes (eg, ABCG5, ABCG8). D-PDMP affected very-low-density lipoprotein catabolism by increasing the gene expression for lipoprotein lipase and very-low-density lipoprotein receptor. Rabbits fed a Western diet for 90 days had extensive atherosclerosis accompanied by a 17.5-fold increase in total cholesterol levels and a 3-fold increase in lactosylceramide levels. This was completely prevented by feeding D-PDMP. Conclusions-Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/-mice and rabbits. Thus, inhibition of glycosphingolipid synthesis may be a novel approach to ameliorate atherosclerosis and arterial stiffness. (Circulation. 2014;129:2403-2413.)
AB - Background-Glycosphingolipids, integral components of the cell membrane, have been shown to serve as messengers, transducing growth factor-initiated phenotypes. Here, we have examined whether inhibition of glycosphingolipid synthesis could ameliorate atherosclerosis and arterial stiffness in transgenic mice and rabbits. Methods and Results-Apolipoprotein E-/-mice (12 weeks of age; n=6) were fed regular chow or a Western diet (1.25% cholesterol, 2% fat). Mice were fed 5 or 10 mg/kg of an inhibitor of glycosphingolipid synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), solubilized in vehicle (5% Tween-80 in PBS); the placebo group received vehicle only. At 20 and 36 weeks of age, serial echocardiography was performed to measure aortic intima-media thickening. Aortic pulse-wave velocity measured vascular stiffness. Feeding mice a Western diet markedly increased aortic pulse-wave velocity, intima-media thickening, oxidized low-density lipoprotein, Ca2+ deposits, and glucosylceramide and lactosylceramide synthase activity. These were dose-dependently decreased by feeding D-PDMP. In liver, D-PDMP decreased cholesterol and triglyceride levels by raising the expression of SREBP2, low-density lipoprotein receptor, HMGCo-A reductase, and the cholesterol efflux genes (eg, ABCG5, ABCG8). D-PDMP affected very-low-density lipoprotein catabolism by increasing the gene expression for lipoprotein lipase and very-low-density lipoprotein receptor. Rabbits fed a Western diet for 90 days had extensive atherosclerosis accompanied by a 17.5-fold increase in total cholesterol levels and a 3-fold increase in lactosylceramide levels. This was completely prevented by feeding D-PDMP. Conclusions-Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/-mice and rabbits. Thus, inhibition of glycosphingolipid synthesis may be a novel approach to ameliorate atherosclerosis and arterial stiffness. (Circulation. 2014;129:2403-2413.)
UR - http://www.scopus.com/inward/record.url?scp=84902172850&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.113.007559
DO - 10.1161/CIRCULATIONAHA.113.007559
M3 - Article
C2 - 24710030
AN - SCOPUS:84902172850
SN - 0009-7322
VL - 129
SP - 2403
EP - 2413
JO - Circulation
JF - Circulation
IS - 23
ER -