TY - JOUR
T1 - Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas
AU - Bernhard, Joan M.
AU - Edgcomb, Virginia P.
AU - Visscher, Pieter T.
AU - McIntyre-Wressnig, Anna
AU - Summons, Roger E.
AU - Bouxsein, Mary L.
AU - Louis, Leeann
AU - Jeglinski, Marleen
PY - 2013/6/11
Y1 - 2013/6/11
N2 - Microbialites, which are organosedimentary structures formed by microbial communities through binding and trapping and/or in situ precipitation, have a wide array of distinctive morphologies and long geologic record. The origin of morphological variability is hotly debated; elucidating the cause or causes of microfabric differences could provide insights into ecosystem functioning and biogeochemistry during much of Earth's history. Although rare today, morphologically distinct, co-occurring extant microbialites provide the opportunity to examine and compare microbial communities that may be responsible for establishing and modifying microbialite microfabrics. Highborne Cay, Bahamas, has extant laminated (i.e., stromatolites) and clotted (i.e., thrombolites) marine microbialites in close proximity, allowing focused questions about how community composition relates to physical attributes. Considerable knowledge exists about prokaryotic composition of microbialite mats (i.e., stromatolitic and thrombolitic mats), but little is known about their eukaryotic communities, especially regarding heterotrophic taxa. Thus, the heterotrophic eukaryotic communities of Highborne stromatolites and thrombolites were studied. Here, we show that diverse foraminiferal communities inhabit microbialite mat surfaces and subsurfaces; thecate foraminifera are relatively abundant in all microbialite types, especially thrombolitic mats; foraminifera stabilize grains in mats; and thecate reticulopod activities can impact stromatolitic mat lamination. Accordingly, and in light of foraminiferal impacts on modern microbialites, our results indicate that the microbialite fossil record may reflect the impact of the radiation of these protists.
AB - Microbialites, which are organosedimentary structures formed by microbial communities through binding and trapping and/or in situ precipitation, have a wide array of distinctive morphologies and long geologic record. The origin of morphological variability is hotly debated; elucidating the cause or causes of microfabric differences could provide insights into ecosystem functioning and biogeochemistry during much of Earth's history. Although rare today, morphologically distinct, co-occurring extant microbialites provide the opportunity to examine and compare microbial communities that may be responsible for establishing and modifying microbialite microfabrics. Highborne Cay, Bahamas, has extant laminated (i.e., stromatolites) and clotted (i.e., thrombolites) marine microbialites in close proximity, allowing focused questions about how community composition relates to physical attributes. Considerable knowledge exists about prokaryotic composition of microbialite mats (i.e., stromatolitic and thrombolitic mats), but little is known about their eukaryotic communities, especially regarding heterotrophic taxa. Thus, the heterotrophic eukaryotic communities of Highborne stromatolites and thrombolites were studied. Here, we show that diverse foraminiferal communities inhabit microbialite mat surfaces and subsurfaces; thecate foraminifera are relatively abundant in all microbialite types, especially thrombolitic mats; foraminifera stabilize grains in mats; and thecate reticulopod activities can impact stromatolitic mat lamination. Accordingly, and in light of foraminiferal impacts on modern microbialites, our results indicate that the microbialite fossil record may reflect the impact of the radiation of these protists.
KW - Geobiology
KW - Neoproterozoic
KW - Ooid
KW - Sedimentology
UR - http://www.scopus.com/inward/record.url?scp=84878985929&partnerID=8YFLogxK
U2 - 10.1073/pnas.1221721110
DO - 10.1073/pnas.1221721110
M3 - Article
C2 - 23716649
AN - SCOPUS:84878985929
SN - 0027-8424
VL - 110
SP - 9830
EP - 9834
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 24
ER -