Inter-individual variability in the foraging behaviour of traplining bumblebees

Simon Klein*, Cristian Pasquaretta, Andrew B. Barron, Jean Marc Devaud, Mathieu Lihoreau

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
28 Downloads (Pure)


Workers of social insects, such as bees, ants and wasps, show some degree of inter-individual variability in decision-making, learning and memory. Whether these natural cognitive differences translate into distinct adaptive behavioural strategies is virtually unknown. Here we examined variability in the movement patterns of bumblebee foragers establishing routes between artificial flowers. We recorded all flower visitation sequences performed by 29 bees tested for 20 consecutive foraging bouts in three experimental arrays, each characterised by a unique spatial configuration of artificial flowers and three-dimensional landmarks. All bees started to develop efficient routes as they accumulated foraging experience in each array, and showed consistent inter-individual differences in their levels of route fidelity and foraging performance, as measured by travel speed and the frequency of revisits to flowers. While the tendency of bees to repeat the same route was influenced by their colony origin, foraging performance was correlated to body size. The largest foragers travelled faster and made less revisits to empty flowers. We discuss the possible adaptive value of such inter-individual variability within the forager caste for optimisation of colony-level foraging performances in social pollinators.

Original languageEnglish
Article number4561
Pages (from-to)1-12
Number of pages12
JournalScientific Reports
Issue number1
Publication statusPublished - 4 Jul 2017

Fingerprint Dive into the research topics of 'Inter-individual variability in the foraging behaviour of traplining bumblebees'. Together they form a unique fingerprint.

Cite this