TY - JOUR
T1 - Joint downlink user association and interference management in two-tier HetNets with dynamic resource partitioning
AU - Liu, Chunshan
AU - Li, Min
AU - Hanly, Stephen V.
AU - Whiting, Philip
PY - 2017/2
Y1 - 2017/2
N2 - We investigate a joint user association and interference management problem in two-tier downlink heterogeneous networks where pico base stations (BSs) are densely deployed in areas of high traffic demand. We employ macro almost blanking subframes (ABSs) to mitigate cross-tier interference. To manage co-tier interference among picocells, we introduce pico operation mode (POM): During each POM, a distinct subset of picocells serve users simultaneously; different POMs operate at different times at different durations. We formulate the problem as maximizing the network utility under proportional fairness with the optimization over user association and resource partitioning (RP) (including the macro ABS and the amount of time allocated to each POM). As an exhaustive search over all possible POMs in the optimization may become computationally infeasible, we propose a method of preselecting favorable POMs to reduce the dimension of the optimization. With the selected POMs, we explicitly examine the structure of the optimal solutions and show that 1) the optimal user association is load-aware and can be determined by rate bias values of each BS, and 2) all the POMs and the macro BSs have balanced load in the sense that the ratios of the number of associated users to the allocated time are the same. Based on the analysis, an alternating algorithm is developed to obtain the RP and the biases. We demonstrate through numerical examples that 1) the proposed POM selection method does not incur significant performance loss, compared with the case where all possible POMs are considered; 2) the alternating algorithm provides near-optimal cell association and RP solutions; 3) by applying the proposed framework, significant network performance improvement can be achieved with dense pico deployments, compared with baselines without co-tier interference management and baselines with sparse pico deployments.
AB - We investigate a joint user association and interference management problem in two-tier downlink heterogeneous networks where pico base stations (BSs) are densely deployed in areas of high traffic demand. We employ macro almost blanking subframes (ABSs) to mitigate cross-tier interference. To manage co-tier interference among picocells, we introduce pico operation mode (POM): During each POM, a distinct subset of picocells serve users simultaneously; different POMs operate at different times at different durations. We formulate the problem as maximizing the network utility under proportional fairness with the optimization over user association and resource partitioning (RP) (including the macro ABS and the amount of time allocated to each POM). As an exhaustive search over all possible POMs in the optimization may become computationally infeasible, we propose a method of preselecting favorable POMs to reduce the dimension of the optimization. With the selected POMs, we explicitly examine the structure of the optimal solutions and show that 1) the optimal user association is load-aware and can be determined by rate bias values of each BS, and 2) all the POMs and the macro BSs have balanced load in the sense that the ratios of the number of associated users to the allocated time are the same. Based on the analysis, an alternating algorithm is developed to obtain the RP and the biases. We demonstrate through numerical examples that 1) the proposed POM selection method does not incur significant performance loss, compared with the case where all possible POMs are considered; 2) the alternating algorithm provides near-optimal cell association and RP solutions; 3) by applying the proposed framework, significant network performance improvement can be achieved with dense pico deployments, compared with baselines without co-tier interference management and baselines with sparse pico deployments.
KW - cell association
KW - dynamic partitioning
KW - enhanced intercell interference coordination (eICIC)
KW - graph coloring
KW - heterogeneous networks
KW - interference management
UR - http://purl.org/au-research/grants/arc/DP130101760
UR - http://www.scopus.com/inward/record.url?scp=85013031037&partnerID=8YFLogxK
U2 - 10.1109/TVT.2016.2565538
DO - 10.1109/TVT.2016.2565538
M3 - Article
AN - SCOPUS:85013031037
SN - 0018-9545
VL - 66
SP - 1365
EP - 1378
JO - IEEE Transactions on Vehicular Technology
JF - IEEE Transactions on Vehicular Technology
IS - 2
ER -