Abstract
We present spectroscopic confirmation of a galaxy cluster at z = 2.095 in the COSMOS field. This galaxy cluster was first reported in the ZFOURGE survey as harboring evolved massive galaxies using photometric redshifts derived with deep near-infrared (NIR) medium-band filters. We obtain medium-resolution (R ∼ 3600) NIR spectroscopy with MOSFIRE on the Keck 1 telescope and secure 180 redshifts in a 12′ x 12′ region. We find a prominent spike of 57 galaxies at z = 2.095 corresponding to the galaxy cluster. The cluster velocity dispersion is measured to be σv1D = 552 ± 52 km s-1. This is the first study of a galaxy cluster in this redshift range (z ≳ 2.0) with the combination of spectral resolution (∼26 km s-1) and the number of confirmed members (>50) needed to impose a meaningful constraint on the cluster velocity dispersion and map its members over a large field of view. Our ΛCDM cosmological simulation suggests that this cluster will most likely evolve into a Virgo-like cluster with Mvir = 1014.4±0.3 M⊙ (68% confidence) at z ∼ 0. The theoretical probability of finding such a cluster is ∼4%. Our results demonstrate the feasibility of studying galaxy clusters at z > 2 in the same detailed manner using multi-object NIR spectrographs as has been done in the optical in lower-redshift clusters.
Original language | English |
---|---|
Article number | L20 |
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Astrophysical Journal Letters |
Volume | 795 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Nov 2014 |
Bibliographical note
Copyright the American Astronomical Society. First published in Astrophysical journal letters, volume 795, issue 1, article L20. The original publication is available at http://doi.org/10.1088/2041-8205/795/1/L20, published by IOP Publishing. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- galaxies: clusters: general
- galaxies: high-redshift
- large-scale structure of universe