Abstract
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL’s configured for maximum output power (of order 100 W) but with poor beam quality (M2 300). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-nsFWHMpulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM00-mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction (>15 W TEM00, .23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
Original language | English |
---|---|
Pages (from-to) | 6904-6911 |
Number of pages | 8 |
Journal | Applied Optics |
Volume | 38 |
Issue number | 33 |
DOIs | |
Publication status | Published - 20 Nov 1999 |
Externally published | Yes |