Kynurenine pathway modulation reverses the experimental autoimmune encephalomyelitis mouse disease progression

Gayathri Sundaram, Chai K. Lim, Bruce J. Brew, Gilles J. Guillemin

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)
17 Downloads (Pure)


Background: Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system characterized by demyelination, neuroinflammation, and neurodegeneration. Activation of the kynurenine pathway (KP) results from acute and chronic neuroinflammation leading to both immune suppression and neurotoxicity. However, the exact effects of KP metabolites and changes in neurodegenerative diseases over time are not fully understood. Studies, including those in MS models, have reported that short-term KP activation is beneficial through immune tolerance. However, the effects of long-term KP activation are poorly understood. We hypothesized that such chronic activation is responsible for the neurodegeneration in MS, and further, modulating the KP in EAE-induced mice could significantly decrease the EAE disease severity. Methods: We biochemically altered the KP at different stages of the disease in experimental allergic encephalomyelitis (EAE) mouse model of MS and at two different enzymatic levels of the KP (IDO-1 (indoleamine 2,3 dioxygenase)) and KMO (kynurenine monooxygenase). CNS tissue and blood samples were analyzed longitudinally using GCMS, HPLC, IHC, and RT-PCR. Results: We showed that the KP was steadily upregulated correlating with disease severity and associated with a shift towards increasing concentrations of the KP metabolite quinolinic acid, a neuro- and gliotoxin. KP modulation by inhibition of IDO-1 with 1-methyl tryptophan (1-MT) was dependent on the timing of treatment at various stages of EAE. IDO-1 inhibition at EAE score 2 led to significantly higher numbers of FoxP3 cells (p < 0.001) in the spleen than earlier IDO-1 inhibition (prophylactic 1-MT treatment group (p < 0.001)), 1-MT treatment after EAE induction (EAE score 0; p < 0.001), and 1-MT treatment at EAE score of 1 (p < 0.05). Significant improvement of disease severity was observed in EAE mice treated with 1-MT at EAE score 2 compared to the untreated group (p < 0.05). KP modulation by KMO inhibition with Ro 61-8048 led to significantly greater numbers of Foxp3 cells (p < 0.05) in Ro 61-8048 treated mice and even more significant amelioration of EAE disease compared to the 1-MT treatment groups. Conclusions: These results provide a new mechanistic link between neuroinflammation and neurodegeneration and point to KP modulation at the KMO level to preserve immune tolerance and limit neurodegeneration in EAE. They provide the foundation for new clinical trials for MS.

Original languageEnglish
Article number176
Pages (from-to)1-14
Number of pages14
JournalJournal of Neuroinflammation
Issue number1
Publication statusPublished - 6 Jun 2020

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


  • Kynurenine pathway
  • Multiple sclerosis
  • Neurodegeneration
  • Neuroinflammation
  • Quinolinic acid
  • Tryptophan


Dive into the research topics of 'Kynurenine pathway modulation reverses the experimental autoimmune encephalomyelitis mouse disease progression'. Together they form a unique fingerprint.

Cite this