L2 boundedness of commutators of Calderón-Zygmund singular integral operators

Donggao Deng*, Lixin Yan, Qixiang Yang

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    L2 boundedness of commutators of Calderón-Zygmund singular integral operators with weak kernel [b, T]f= bTf - T(bf) is proved when 6 ∈ BMO. This result extends Coifman-Rochberg-Weiss Theorem. An equivalent version is that bilinear operator gT( f) -fT * ( g ) ∈ H1, provided f, g ∈ L2. This is a new result in the compensated compactness theory.

    Original languageEnglish
    Pages (from-to)426-427
    Number of pages2
    JournalProgress in Natural Science
    Volume8
    Issue number4
    Publication statusPublished - 1998

    Keywords

    • BCR algorithm
    • BMO
    • Commutator
    • Hardy space
    • Singular integral
    • Wavelets

    Fingerprint

    Dive into the research topics of 'L2 boundedness of commutators of Calderón-Zygmund singular integral operators'. Together they form a unique fingerprint.

    Cite this