TY - JOUR
T1 - Laser-heated diamond anvil cell at the advanced light source beamline 12.2.2
AU - Caldwell, Wendel A.
AU - Kunz, Martin
AU - Celestre, R. S.
AU - Domning, E. E.
AU - Walter, M. J.
AU - Walker, D.
AU - Glossinger, J.
AU - MacDowell, A. A.
AU - Padmore, H. A.
AU - Jeanloz, R.
AU - Clark, S. M.
PY - 2007/11/11
Y1 - 2007/11/11
N2 - The laser-heating system for the diamond anvil cell at endstation 2 of beamline 12.2.2 of the Advanced Light Source in Berkeley, CA, has been constructed and is available for in situ high-pressure high-temperature X-ray experiments. The endstation couples a high-brilliance synchrotron X-ray source with an industrial strength laser to heat and probe samples at high pressure in the diamond anvil cell. The system incorporates an 50 W Nd:YLF (cw) laser operated in TEM01* mode. Double-sided heating is achieved by splitting the laser beam into two paths that are directed through the opposing diamond anvils. X-ray transparent mirrors steer the laser beams coaxial with the X-ray beam from the superconducting bending magnet (energy range 6-35 KeV) and direct the emitted light from the heated sample into two separate spectrometers for temperature measurement by spectroradiometry. Objective lenses focus the laser beam to a size of 25 μm diameter (FWHM) in the sample region. An X-ray spot size of 10 μm diameter (FWHM) has been achieved with the installation of a pair of focusing Kirkpatrick-Baez mirrors. A unique aperture configuration has produced an X-ray beam profile that has very low intensity in the tails. The main thrust of the program is aimed at producing in situ high-pressure high-temperature X-ray diffraction data, but other modes of operation, such as X-ray imaging have been accomplished. Technical details of the experimental setup will be presented along with initial results.
AB - The laser-heating system for the diamond anvil cell at endstation 2 of beamline 12.2.2 of the Advanced Light Source in Berkeley, CA, has been constructed and is available for in situ high-pressure high-temperature X-ray experiments. The endstation couples a high-brilliance synchrotron X-ray source with an industrial strength laser to heat and probe samples at high pressure in the diamond anvil cell. The system incorporates an 50 W Nd:YLF (cw) laser operated in TEM01* mode. Double-sided heating is achieved by splitting the laser beam into two paths that are directed through the opposing diamond anvils. X-ray transparent mirrors steer the laser beams coaxial with the X-ray beam from the superconducting bending magnet (energy range 6-35 KeV) and direct the emitted light from the heated sample into two separate spectrometers for temperature measurement by spectroradiometry. Objective lenses focus the laser beam to a size of 25 μm diameter (FWHM) in the sample region. An X-ray spot size of 10 μm diameter (FWHM) has been achieved with the installation of a pair of focusing Kirkpatrick-Baez mirrors. A unique aperture configuration has produced an X-ray beam profile that has very low intensity in the tails. The main thrust of the program is aimed at producing in situ high-pressure high-temperature X-ray diffraction data, but other modes of operation, such as X-ray imaging have been accomplished. Technical details of the experimental setup will be presented along with initial results.
UR - http://www.scopus.com/inward/record.url?scp=35348860943&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2007.08.113
DO - 10.1016/j.nima.2007.08.113
M3 - Article
AN - SCOPUS:35348860943
SN - 0168-9002
VL - 582
SP - 221
EP - 225
JO - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment
IS - 1
ER -