Lattice-based completely non-malleable public-key encryption in the standard model

Reza Sepahi*, Ron Steinfeld, Josef Pieprzyk

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


An encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its chances of producing an encryption of a related message (under a given public key). Fischlin introduced a stronger notion, known as complete non-malleability, which requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti later proposed a comparison-based definition of this security notion, which is more in line with the well-studied definitions proposed by Bellare et al. The authors also provide additional feasibility results by proposing two constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on generic NIZK approach. They left the existence of efficient schemes in the common reference string model as an open problem. Recently, two efficient public-key encryption schemes have been proposed by Libert and Yung, and Barbosa and Farshim, both of them are based on pairing identity-based encryption. At ACISP 2011, Sepahi et al. proposed a method to achieve completely non-malleable encryption in the public-key setting using lattices but there is no security proof for the proposed scheme. In this paper we review the mentioned scheme and provide its security proof in the standard model. Our study shows that Sepahi's scheme will remain secure even for post-quantum world since there are currently no known quantum algorithms for solving lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms.

Original languageEnglish
Pages (from-to)293-313
Number of pages21
JournalDesigns, Codes and Cryptography
Issue number2
Publication statusPublished - May 2014


  • Complete non-malleability
  • Lattice
  • Public-key encryption
  • Standard model


Dive into the research topics of 'Lattice-based completely non-malleable public-key encryption in the standard model'. Together they form a unique fingerprint.

Cite this