Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates

Chris J. Blackman*, Sean M. Gleason, Yvonne Chang, Alicia M. Cook, Claire Laws, Mark Westoby

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    56 Citations (Scopus)


    Background and Aims Vulnerability of the leaf hydraulic pathway to water-stress-induced dysfunction is a key component of drought tolerance in plants and may be important in defining species' climatic range. However, the generality of the association between leaf hydraulic vulnerability and climate across species and sites remains to be tested. Methods Leaf hydraulic vulnerability to drought (P50leaf, thewater potential inducing 50%loss in hydraulic function) was measured in a diverse group of 92 woody, mostly evergreen angiosperms from sites across a wide range of habitats. These new data together with some previously published were tested against key climate indices related to water availability. Differences in within-site variability in P50leaf between sites were also examined. Key Results Values of hydraulic vulnerability to drought in leaves decreased strongly (i.e. became more negative) with decreasing annual rainfall and increasing aridity across sites. The standard deviation in P50leaf values recorded within each site was positively correlated with increasing aridity. P50leaf was also a good indicator of the climatic envelope across each species' distributional range as well as their dry-end distributional limits within Australia, although this relationship was not consistently detectable within sites. Conclusions The findings indicate that species sorting processes have influenced distributional patterns of P50leaf across the rainfall spectrum, but alternative strategies for dealing with water deficit exist within sites. The strong link to aridity suggests leaf hydraulic vulnerability may influence plant distributions under future climates.

    Original languageEnglish
    Pages (from-to)435-440
    Number of pages6
    JournalAnnals of Botany
    Issue number3
    Publication statusPublished - Sept 2014


    • leaf hydraulic vulnerability
    • interspecific variation
    • drought
    • rainfall
    • aridity
    • climate change
    • species distribution


    Dive into the research topics of 'Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates'. Together they form a unique fingerprint.

    Cite this