Leaf size estimation based on leaf length, width and shape

Julian Schrader, Peijian Shi, Dana L. Royer, Daniel J. Peppe, Rachael V. Gallagher, Yirong Li, Rong Wang, Ian J. Wright

    Research output: Contribution to journalArticlepeer-review

    50 Citations (Scopus)


    Background and Aims: Leaf size has considerable ecological relevance, making it desirable to obtain leaf size estimations for as many species worldwide as possible. Current global databases, such as TRY, contain leaf size data for ~30 000 species, which is only ~8% of known species worldwide. Yet, taxonomic descriptions exist for the large majority of the remainder. Here we propose a simple method to exploit information on leaf length, width and shape from species descriptions to robustly estimate leaf areas, thus closing this considerable knowledge gap for this important plant functional trait.

    Methods: Using a global dataset of all major leaf shapes measured on 3125 leaves from 780 taxa, we quantified scaling functions that estimate leaf size as a product of leaf length, width and a leaf shape-specific correction factor. We validated our method by comparing leaf size estimates with those obtained from image recognition software and compared our approach with the widely used correction factor of 2/3.

    Key Results: Correction factors ranged from 0.39 for highly dissected, lobed leaves to 0.79 for oblate leaves. Leaf size estimation using leaf shape-specific correction factors was more accurate and precise than estimates obtained from the correction factor of 2/3.

    Conclusion: Our method presents a tractable solution to accurately estimate leaf size when only information on leaf length, width and shape is available or when labour and time constraints prevent usage of image recognition software. We see promise in applying our method to data from species descriptions (including from fossils), databases, field work and on herbarium vouchers, especially when non-destructive in situ measurements are needed.
    Original languageEnglish
    Pages (from-to)395-406
    Number of pages12
    JournalAnnals of Botany
    Issue number4
    Publication statusPublished - 17 Sept 2021


    • Correction factor
    • functional trait
    • leaf area
    • leaf length
    • leaf morphology
    • leaf size
    • leaf width
    • proportional relationship


    Dive into the research topics of 'Leaf size estimation based on leaf length, width and shape'. Together they form a unique fingerprint.

    Cite this