TY - JOUR
T1 - Learning deep part-aware embedding for person retrieval
AU - Zhao, Yang
AU - Shen, Chunhua
AU - Yu, Xiaohan
AU - Chen, Hao
AU - Gao, Yongsheng
AU - Xiong, Shengwu
PY - 2021/8
Y1 - 2021/8
N2 - Person retrieval is an important vision task, aiming at matching the images of the same person under various camera views. The key challenge of person retrieval lies in the large intra-class variations among the person images. Therefore, how to learn discriminative feature representations becomes the core problem. In this paper, we propose a deep part-aware representation learning method for person retrieval. First, an improved triplet loss is introduced such that the global feature representations from the same identity are closely clustered. Meanwhile, a localization branch is proposed to automatically localize those discriminative person-wise parts or regions, only using identity labels in a weakly supervised manner. Via the learning simultaneously guided by the global branch and the localization branch, the proposed method can further improve the performance for person retrieval. Through an extensive set of ablation studies, we verify that the localization branch and the improved triplet loss each contributes to the performance boosts of the proposed method. Our model obtains superior (or comparable) performance compared to state-of-the-art methods for person retrieval on the four public person retrieval datasets. On the CUHK03-labeled dataset, for instance, the performance increases from 73.0% mAP and 77.9% rank-1 accuracy to 80.8% (+7.8%) mAP and 83.9% (+6.0%) rank-1 accuracy.
AB - Person retrieval is an important vision task, aiming at matching the images of the same person under various camera views. The key challenge of person retrieval lies in the large intra-class variations among the person images. Therefore, how to learn discriminative feature representations becomes the core problem. In this paper, we propose a deep part-aware representation learning method for person retrieval. First, an improved triplet loss is introduced such that the global feature representations from the same identity are closely clustered. Meanwhile, a localization branch is proposed to automatically localize those discriminative person-wise parts or regions, only using identity labels in a weakly supervised manner. Via the learning simultaneously guided by the global branch and the localization branch, the proposed method can further improve the performance for person retrieval. Through an extensive set of ablation studies, we verify that the localization branch and the improved triplet loss each contributes to the performance boosts of the proposed method. Our model obtains superior (or comparable) performance compared to state-of-the-art methods for person retrieval on the four public person retrieval datasets. On the CUHK03-labeled dataset, for instance, the performance increases from 73.0% mAP and 77.9% rank-1 accuracy to 80.8% (+7.8%) mAP and 83.9% (+6.0%) rank-1 accuracy.
KW - Person retrieval
KW - Part-aware embedding
KW - Improved triplet loss
UR - http://www.scopus.com/inward/record.url?scp=85102642883&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/arc/DP180100958
UR - http://purl.org/au-research/grants/arc/IH180100002
U2 - 10.1016/j.patcog.2021.107938
DO - 10.1016/j.patcog.2021.107938
M3 - Article
SN - 0031-3203
VL - 116
SP - 1
EP - 10
JO - Pattern Recognition
JF - Pattern Recognition
M1 - 107938
ER -