@inproceedings{43d3ad1d64c2496e89422e8d07ca684e,
title = "Learning the attribute selection measures for decision tree",
abstract = "Decision tree has most widely used for classification. However the main influence of decision tree classification performance is attribute selection problem. The paper considers a number of different attribute selection measures and experimentally examines their behavior in classification. The results show that the choice of measure doesn’t affect the classification accuracy, but the size of the tree is influenced significantly. The main effect of the new attribute selection measures which base on normal gain and distance is that they generate smaller trees than traditional attribute selection measures.",
author = "Xiaolin Chen and Zhihua Cai and Jia Wu",
year = "2013",
doi = "10.1117/12.2021251",
language = "English",
volume = "8784",
series = "Proceedings of SPIE",
publisher = "SPIE",
pages = "87842S",
editor = "Yulin Wang and Liansheng Tan and Jianhong Zhou",
booktitle = "Fifth International Conference on Machine Vision (ICMV 2012)",
address = "United States",
}