Projects per year
Abstract
A Quillen model structure is presented by an interacting pair of weak factorization systems. We prove that in the world of locally presentable categories, any weak factorization system with accessible functorial factorizations can be lifted along either a left or a right adjoint. It follows that accessible model structures on locally presentable categories – ones admitting accessible functorial factorizations, a class that includes all combinatorial model structures but others besides – can be lifted along either a left or a right adjoint if and only if an essential 'acyclicity' condition holds. A similar result was claimed in a paper of Hess–Kędziorek–Riehl–Shipley, but the proof given there was incorrect. In this note, we explain this error and give a correction, and also provide a new statement and a different proof of the theorem which is more tractable for homotopy-theoretic applications.
Original language | English |
---|---|
Pages (from-to) | 59-76 |
Number of pages | 18 |
Journal | Journal of Topology |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - Mar 2020 |
Fingerprint
Dive into the research topics of 'Lifting accessible model structures'. Together they form a unique fingerprint.-
-
Monoidal categories and beyond: new contexts and new applications
Street, R., Verity, D., Lack, S., Garner, R. & MQRES Inter Tuition Fee only, M. I. T. F. O.
30/06/16 → 17/06/19
Project: Research