Abstract
Accurate interpretation of SKS shear-wave splitting observations requires inherently indeterminate depth information. Magnetotelluric electrical anisotropies are depth-constrained, and thereby offer possible resolution of the SKS conundrum. MT and teleseismic instruments, deployed across the Great Slave Lake shear zone, northern Canada, investigated lithospheric anisotropy and tested a hypothesis that seismic and electrical anisotropy obliquity can infer mantle strain shear-sense. Lithospheric mantle MT strike (N60°E) differs significantly from crustal MT strike (N30°E). SKS splitting vectors outside the shear zone exhibit single-layer anisotropy with fast axis parallel to upper-mantle MT strike and oblique to present-day plate motion (N135°W). Back-azimuth sensitivity at sites within the ∼ 30 km wide shear-zone imply more complex layering, with two-layer inversion yielding an upper layer of ∼N20°E and a lower layer of ∼N66°E. The MT data help to constrain the depth location of SKS anisotropy and, taken together, support a model of fossil lithospheric anisotropy.
Original language | English |
---|---|
Article number | L19614 |
Pages (from-to) | 1-4 |
Number of pages | 4 |
Journal | Geophysical Research Letters |
Volume | 31 |
Issue number | 19 |
DOIs | |
Publication status | Published - 16 Oct 2004 |
Externally published | Yes |
Keywords
- 7205 Seismology: Continental crust (1242)
- 7218 Seismology: Lithosphere and upper mantle
- 8110 Tectonophysics: Continental tectonics - general (0905)