TY - JOUR
T1 - Macrophage activation status determines the internalization of mesoporous silica particles of different sizes
T2 - exploring the role of different pattern recognition receptors
AU - Gallud, Audrey
AU - Bondarenko, Olesja
AU - Feliu, Neus
AU - Kupferschmidt, Natalia
AU - Atluri, Rambabu
AU - Garcia-Bennett, Alfonso
AU - Fadeel, Bengt
PY - 2017/3
Y1 - 2017/3
N2 - Mesoporous silica-based particles are promising candidates for biomedical applications. Here, we address the importance of macrophage activation status for internalization of AMS6 (approx. 200 nm in diameter) versus AMS8 (approx. 2 μm) mesoporous silica particles and the role of different phagocytosis receptors for particle uptake. To this end, FITC-conjugated silica particles were used. AMS8 were found to be non-cytotoxic both for M-CSF-stimulated (anti-inflammatory) and GM-CSF-stimulated (pro-inflammatory) macrophages, whereas AMS6 exhibited cytotoxicity towards M-CSF-stimulated, but not GM-CSF-stimulated macrophages; this toxicity was, however, mitigated in the presence of serum. AMS8 triggered the secretion of pro-inflammatory cytokines in M-CSF-activated cells. Class A scavenger receptor (SR-A) expression was noted in both M-CSF and GM-CSF-stimulated macrophages, although the expression was higher in the former case, and gene silencing of SR-A resulted in a decreased uptake of AMS6 in the absence of serum. GM-CSF-stimulated macrophages expressed higher levels of the mannose receptor CD206 compared to M-CSF-stimulated cells, and uptake of AMS6, but not AMS8, was reduced following the downregulation of CD206 in GM-CSF-stimulated cells; particle uptake was also suppressed by mannan, a competitive ligand. These studies demonstrate that macrophage activation status is an important determinant of particle uptake and provide evidence for a role of different macrophage receptors for cell uptake of silica particles.
AB - Mesoporous silica-based particles are promising candidates for biomedical applications. Here, we address the importance of macrophage activation status for internalization of AMS6 (approx. 200 nm in diameter) versus AMS8 (approx. 2 μm) mesoporous silica particles and the role of different phagocytosis receptors for particle uptake. To this end, FITC-conjugated silica particles were used. AMS8 were found to be non-cytotoxic both for M-CSF-stimulated (anti-inflammatory) and GM-CSF-stimulated (pro-inflammatory) macrophages, whereas AMS6 exhibited cytotoxicity towards M-CSF-stimulated, but not GM-CSF-stimulated macrophages; this toxicity was, however, mitigated in the presence of serum. AMS8 triggered the secretion of pro-inflammatory cytokines in M-CSF-activated cells. Class A scavenger receptor (SR-A) expression was noted in both M-CSF and GM-CSF-stimulated macrophages, although the expression was higher in the former case, and gene silencing of SR-A resulted in a decreased uptake of AMS6 in the absence of serum. GM-CSF-stimulated macrophages expressed higher levels of the mannose receptor CD206 compared to M-CSF-stimulated cells, and uptake of AMS6, but not AMS8, was reduced following the downregulation of CD206 in GM-CSF-stimulated cells; particle uptake was also suppressed by mannan, a competitive ligand. These studies demonstrate that macrophage activation status is an important determinant of particle uptake and provide evidence for a role of different macrophage receptors for cell uptake of silica particles.
KW - Silica particles
KW - Human macrophages
KW - Scavenger receptors
KW - Mannose receptors
UR - http://www.scopus.com/inward/record.url?scp=85008392676&partnerID=8YFLogxK
U2 - 10.1016/j.biomaterials.2016.12.029
DO - 10.1016/j.biomaterials.2016.12.029
M3 - Article
C2 - 28063981
AN - SCOPUS:85008392676
SN - 0142-9612
VL - 121
SP - 28
EP - 40
JO - Biomaterials
JF - Biomaterials
ER -