Abstract
Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ∼ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ∼10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ∼10 Hz region relevant for current cold atom gravimeters.
Original language | English |
---|---|
Article number | 37495 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Scientific Reports |
Volume | 6 |
DOIs | |
Publication status | Published - 21 Nov 2016 |