Mantle processes during Gondwana break-up and dispersal

Chris Hawkesworth*, Simon Kelley, Simon Turner, Anton L E Roex, Bryan Storey

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

135 Citations (Scopus)


This paper reviews the Mesozoic continental flood basalts (CFBs) associated with the break-up and dispersal of Gondwana from 185-60 Ma, the conditions for melt generation in mantle plumes and within the continental mantle lithosphere, and possible causes for lithospheric extension. The number of CFB provinces within Gondwana is much less than the number of mantle plumes that are likely to have been emplaced beneath it in the 300 Ma prior to its initial break-up. Also, the difference between the age of the peak of CFB volcanism and that of the oldest adjacent ocean crust decreases with the age of volcanism during the break-up and dispersal of Gondwana. The older CFBs of Karoo and Ferrar appear to have been derived largely from source regions within the mantle lithosphere. It is only in the younger Parana-Etendeka and Deccan CFBs that there are igneous rocks with major, trace element and radiogenic isotope ratios indicative of melting within a mantle plume. These younger CFBs are also clearly associated with hot spot traces on the adjacent ocean floor. The widespread 180 Ma magmatic event is attributed to partial melting within the lithosphere in response to thermal incubation over 300 Ma. In the case of the Ferrar (Antarctica) this was focussed by regional plate margin forces. The implication is that supercontinents effectively self-destruct in response to the build up of heat and resultant magmatism, since these effects significantly weaken the lithosphere and make it more susceptible to break-up in response to regional tectonics. The younger CFB of Parana-Etendeka was generated, at least in part, because the continental lithosphere had been thinned in response to regional tectonics. While magmatism in the Deccan was triggered by the emplacement of the plume, that too may have been beneath slightly thinned lithosphere.

Original languageEnglish
Pages (from-to)239-261
Number of pages23
JournalJournal of African Earth Sciences
Issue number1
Publication statusPublished - Jan 1999
Externally publishedYes


Dive into the research topics of 'Mantle processes during Gondwana break-up and dispersal'. Together they form a unique fingerprint.

Cite this