Marcinkiewicz multipliers associated with the Kohn Laplacian on the Shilov boundary of the product domain in C2n

Peng Chen, Michael G. Cowling, Guorong Hu*, Ji Li

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Let M(i), i= 1 , 2 , … , n, be the boundaries of unbounded domains Ω (i) of finite type in C2, and let □b(i) be the Kohn Laplacian on M(i). In this paper, we study multivariable spectral multipliers m(□b(1),…,□b(n)) acting on the Shilov boundary M~ = M(1)× ⋯ × M(n) of the product domain Ω (1)× ⋯ × Ω (n). We show that if a function m(λ1, … , λn) satisfies a Marcinkiewicz-type smoothness condition defined using Sobolev norms, then the spectral multiplier operator m(□b(1),…,□b(n)) is a product Calderón–Zygmund operator of Journé type.

    Original languageEnglish
    Pages (from-to)347-376
    Number of pages30
    JournalMathematische Zeitschrift
    Volume300
    Issue number1
    Early online date20 Jun 2021
    DOIs
    Publication statusPublished - Jan 2022

    Keywords

    • Nonisotropic smoothing operator
    • Product Calderón-Zygmund operator
    • Marcinkiewicz multiplier
    • Kohn Laplacian

    Fingerprint

    Dive into the research topics of 'Marcinkiewicz multipliers associated with the Kohn Laplacian on the Shilov boundary of the product domain in C2n'. Together they form a unique fingerprint.

    Cite this