Projects per year
Abstract
Let M(i), i= 1 , 2 , … , n, be the boundaries of unbounded domains Ω (i) of finite type in C2, and let □b(i) be the Kohn Laplacian on M(i). In this paper, we study multivariable spectral multipliers m(□b(1),…,□b(n)) acting on the Shilov boundary M~ = M(1)× ⋯ × M(n) of the product domain Ω (1)× ⋯ × Ω (n). We show that if a function m(λ1, … , λn) satisfies a Marcinkiewicz-type smoothness condition defined using Sobolev norms, then the spectral multiplier operator m(□b(1),…,□b(n)) is a product Calderón–Zygmund operator of Journé type.
Original language | English |
---|---|
Pages (from-to) | 347-376 |
Number of pages | 30 |
Journal | Mathematische Zeitschrift |
Volume | 300 |
Issue number | 1 |
Early online date | 20 Jun 2021 |
DOIs | |
Publication status | Published - Jan 2022 |
Keywords
- Nonisotropic smoothing operator
- Product Calderón-Zygmund operator
- Marcinkiewicz multiplier
- Kohn Laplacian
Fingerprint
Dive into the research topics of 'Marcinkiewicz multipliers associated with the Kohn Laplacian on the Shilov boundary of the product domain in C2n'. Together they form a unique fingerprint.Projects
- 1 Active
-
Harmonic analysis and dispersive partial differential equations
Li, J., Guo, Z., Kenig, C. & Nakanishi, K.
31/01/17 → …
Project: Research