Materials discovery of ion-selective membranes using artificial intelligence

Reza Maleki, Seyed Mohammadreza Shams, Yasin Mehdizadeh Chellehbari, Sima Rezvantalab, Ahmad Miri Jahromi, Mohsen Asadnia, Rouzbeh Abbassi, Tejraj Aminabhavi, Amir Razmjou*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

12 Citations (Scopus)
41 Downloads (Pure)

Abstract

Significant attempts have been made to improve the production of ion-selective membranes (ISMs) with higher efficiency and lower prices, while the traditional methods have drawbacks of limitations, high cost of experiments, and time-consuming computations. One of the best approaches to remove the experimental limitations is artificial intelligence (AI). This review discusses the role of AI in materials discovery and ISMs engineering. The AI can minimize the need for experimental tests by data analysis to accelerate computational methods based on models using the results of ISMs simulations. The coupling with computational chemistry makes it possible for the AI to consider atomic features in the output models since AI acts as a bridge between the experimental data and computational chemistry to develop models that can use experimental data and atomic properties. This hybrid method can be used in materials discovery of the membranes for ion extraction to investigate capabilities, challenges, and future perspectives of the AI-based materials discovery, which can pave the path for ISMs engineering.

Original languageEnglish
Article number132
Pages (from-to)1-13
Number of pages13
JournalCommunications Chemistry
Volume5
DOIs
Publication statusPublished - 2022

Bibliographical note

Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Materials discovery of ion-selective membranes using artificial intelligence'. Together they form a unique fingerprint.

Cite this