Abstract
Streaming Recommender Systems (SRSs) have emerged to deliver recommendations based on pervasive data streams, which are a sequence of user-item interactions with multiple behavior types (e.g., purchase, add-to-cart, and view). However, existing SRSs all rely on a single behavior type (e.g., purchase) to make streaming recommendations, and commonly suffer from the data sparsity problem. To address this issue, the relatively more abundant multi-behavior interactions (i.e., interactions with multiple behavior types) could be well leveraged for more accurate streaming recommendations. However, it remains a challenge on how to effectively leverage the commonly-existing and complex multi-behavior interactions for improving the accuracy of streaming recommendations. Targeting at this challenge, we propose the first Multi-behavior Streaming Recommender System in the literature, called MbSRS, to elaborately exploit multi-behavior interactions for delivering accurate recommendations in streaming scenarios. In MbSRS, we first learn instant user preferences and unified item characteristics collaboratively from multi-behavior interactions. Then, we attentively learn long-term user preferences from the historical items interacted by the corresponding users. After that, we wisely fuse the learned instant and long-term user preferences via a gate mechanism. Finally, a novel multi-behavior-specific training process is devised for more effectively learning user preferences towards items from multi-behavior interactions. Extensive experiments on three real-world datasets demonstrate that the proposed MbSRS significantly outperforms the state-of-the-art baselines.
Original language | English |
---|---|
Pages (from-to) | 145-163 |
Number of pages | 19 |
Journal | Information Sciences |
Volume | 631 |
DOIs | |
Publication status | Published - Jun 2023 |
Bibliographical note
Copyright the Author(s) 2023. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Streaming recommendations
- Multi-behavior recommendations
- Recommender system