Abstract
The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range 10 < pT < 300 GeV. The measurement is performed using 139 fb-1 of LHC proton–proton collision data at √s = 13 TeV taken in Run 2 by the ATLAS detector. Charged pions originating from τ-lepton decays are used to provide a sample of high-pT isolated particles, where the composition is known, to test an energy regime that has not previously been probed by in situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by ∼ 2 % across a large part of the pT spectrum in the central region and underestimated by ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are ≲ 1 % for 15 < pT < 185 GeV in the central region. To investigate the source of the discrepancies, the width of the distribution of the ratio of calorimeter energy to track momentum, the energies per layer and response in the hadronic calorimeter are also compared between data and simulation.
Original language | English |
---|---|
Article number | 223 |
Pages (from-to) | 1-31 |
Number of pages | 31 |
Journal | European Physical Journal C |
Volume | 82 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2022 |
Externally published | Yes |
Bibliographical note
Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: European Physical Journal C, Vol. 82, No. 3, 223, 03.2022, p. 1-31.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Measurement of the energy response of the ATLAS calorimeter to charged pions from W±→ τ±(→ π±ντ) ντ events in Run 2 data
AU - ATLAS Collaboration
AU - Aad, G.
AU - Abbott, B.
AU - Abbott, D. C.
AU - Abud, A. Abed
AU - Abeling, K.
AU - Abhayasinghe, D. K.
AU - Abidi, S. H.
AU - Aboulhorma, A.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Hoffman, A. C.Abusleme
AU - Acharya, B. S.
AU - Achkar, B.
AU - Adam, L.
AU - Bourdarios, C. Adam
AU - Adamczyk, L.
AU - Adamek, L.
AU - Addepalli, S. V.
AU - Adelman, J.
AU - Adiguzel, A.
AU - Adorni, S.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agapopoulou, C.
AU - Agaras, M. N.
AU - Agarwala, J.
AU - Aggarwal, A.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmad, A.
AU - Ahmadov, F.
AU - Ahmed, W. S.
AU - Ai, X.
AU - Aielli, G.
AU - Aizenberg, I.
AU - Akatsuka, S.
AU - Akbiyik, M.
AU - Åkesson, T. P.A.
AU - Akimov, A. V.
AU - Khoury, K. Al
AU - Alberghi, G. L.
AU - Albert, J.
AU - Albicocco, P.
AU - Verzini, M. J.Alconada
AU - Alderweireldt, S.
AU - Aleksa, M.
AU - Aleksandrov, I. N.
AU - Alexa, C.
AU - Alexopoulos, T.
AU - Alfonsi, A.
AU - Alfonsi, F.
AU - Alhroob, M.
AU - Ali, B.
AU - Ali, S.
AU - Aliev, M.
AU - Alimonti, G.
AU - Allaire, C.
AU - Allbrooke, B. M.M.
AU - Allport, P. P.
AU - Aloisio, A.
AU - Alonso, F.
AU - Alpigiani, C.
AU - Camelia, E. Alunno
AU - Estevez, M. Alvarez
AU - Alviggi, M. G.
AU - Coutinho, Y. Amaral
AU - Ambler, A.
AU - Ambroz, L.
AU - Amelung, C.
AU - Amidei, D.
AU - Santos, S. P.Amor Dos
AU - Amoroso, S.
AU - Amrouche, C. S.
AU - Anastopoulos, C.
AU - Andari, N.
AU - Andeen, T.
AU - Anders, J. K.
AU - Andrean, S. Y.
AU - Andreazza, A.
AU - Angelidakis, S.
AU - Angerami, A.
AU - Anisenkov, A. V.
AU - Annovi, A.
AU - Antel, C.
AU - Anthony, M. T.
AU - Antipov, E.
AU - Antonelli, M.
AU - Antrim, D. J.A.
AU - Anulli, F.
AU - Aoki, M.
AU - Pozo, J. A.Aparisi
AU - Aparo, M. A.
AU - Bella, L. Aperio
AU - Aranzabal, N.
AU - Ferraz, V. Araujo
AU - Arcangeletti, C.
AU - Arce, A. T.H.
AU - Arena, E.
AU - Arguin, J. F.
AU - Argyropoulos, S.
AU - Arling, J. H.
AU - Armbruster, A. J.
AU - Armstrong, A.
AU - Arnaez, O.
AU - Arnold, H.
AU - Tame, Z. P.Arrubarrena
AU - Artoni, G.
AU - Asada, H.
AU - Asai, K.
AU - Asai, S.
AU - Asbah, N. A.
AU - Asimakopoulou, E. M.
AU - Asquith, L.
AU - Assahsah, J.
AU - Assamagan, K.
AU - Astalos, R.
AU - Atkin, R. J.
AU - Atkinson, M.
AU - Atlay, N. B.
AU - Atmani, H.
AU - Atmasiddha, P. A.
AU - Augsten, K.
AU - Auricchio, S.
AU - Austrup, V. A.
AU - Avner, G.
AU - Avolio, G.
AU - Ayoub, M. K.
AU - Azuelos, G.
AU - Babal, D.
AU - Bachacou, H.
AU - Bachas, K.
AU - Bachiu, A.
AU - Backman, F.
AU - Badea, A.
AU - Bagnaia, P.
AU - Bahrasemani, H.
AU - Bailey, A. J.
AU - Bailey, V. R.
AU - Baines, J. T.
AU - Bakalis, C.
AU - Baker, O. K.
AU - Bakker, P. J.
AU - Bakos, E.
AU - Gupta, D. Bakshi
AU - Balaji, S.
AU - Balasubramanian, R.
AU - Baldin, E. M.
AU - Balek, P.
AU - Ballabene, E.
AU - Balli, F.
AU - Balunas, W. K.
AU - Balz, J.
AU - Banas, E.
AU - Bandieramonte, M.
AU - Bandyopadhyay, A.
AU - Bansal, S.
AU - Barak, L.
AU - Barberio, E. L.
AU - Barberis, D.
AU - Barbero, M.
AU - Barbour, G.
AU - Barends, K. N.
AU - Barillari, T.
AU - Barisits, M. S.
AU - Barkeloo, J.
AU - Barklow, T.
AU - Barnett, B. M.
AU - Barnett, R. M.
AU - Baroncelli, A.
AU - Barone, G.
AU - Barr, A. J.
AU - Navarro, L. Barranco
AU - Barreiro, F.
AU - da Costa, J. Barreiro Guimarães
AU - Barron, U.
AU - Barsov, S.
AU - Bartels, F.
AU - Bartoldus, R.
AU - Bartolini, G.
AU - Barton, A. E.
AU - Bartos, P.
AU - Basalaev, A.
AU - Basan, A.
AU - Baselga, M.
AU - Bashta, I.
AU - Bassalat, A.
AU - Basso, M. J.
AU - Basson, C. R.
AU - Bates, R. L.
AU - Batlamous, S.
AU - Batley, J. R.
AU - Batool, B.
AU - Battaglia, M.
AU - Bauce, M.
AU - Bauer, F.
AU - Bauer, P.
AU - Bawa, H. S.
AU - Bayirli, A.
AU - Beacham, J. B.
AU - Beau, T.
AU - Beauchemin, P. H.
AU - Becherer, F.
AU - Bechtle, P.
AU - Beck, H. P.
AU - Becker, K.
AU - Becot, C.
AU - Beddall, A. J.
AU - Bednyakov, V. A.
AU - Bee, C. P.
AU - Beermann, T. A.
AU - Begalli, M.
AU - Begel, M.
AU - Behera, A.
AU - Behr, J. K.
AU - Da Cruz E Silva, C. Beirao
AU - Beirer, J. F.
AU - Beisiegel, F.
AU - Belfkir, M.
AU - Bella, G.
AU - Bellagamba, L.
AU - Bellerive, A.
AU - Bellos, P.
AU - Beloborodov, K.
AU - Belotskiy, K.
AU - Belyaev, N. L.
AU - Benchekroun, D.
AU - Benhammou, Y.
AU - Benjamin, D. P.
AU - Benoit, M.
AU - Bensinger, J. R.
AU - Bentvelsen, S.
AU - Beresford, L.
AU - Beretta, M.
AU - Berge, D.
AU - Kuutmann, E. Bergeaas
AU - Berger, N.
AU - Bergmann, B.
AU - Bergsten, L. J.
AU - Beringer, J.
AU - Berlendis, S.
AU - Bernardi, G.
AU - Bernius, C.
AU - Bernlochner, F. U.
AU - Berry, T.
AU - Berta, P.
AU - Berthold, A.
AU - Bertram, I. A.
AU - Shojaii, J.
N1 - Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2022/3
Y1 - 2022/3
N2 - The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range 10 < pT < 300 GeV. The measurement is performed using 139 fb-1 of LHC proton–proton collision data at √s = 13 TeV taken in Run 2 by the ATLAS detector. Charged pions originating from τ-lepton decays are used to provide a sample of high-pT isolated particles, where the composition is known, to test an energy regime that has not previously been probed by in situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by ∼ 2 % across a large part of the pT spectrum in the central region and underestimated by ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are ≲ 1 % for 15 < pT < 185 GeV in the central region. To investigate the source of the discrepancies, the width of the distribution of the ratio of calorimeter energy to track momentum, the energies per layer and response in the hadronic calorimeter are also compared between data and simulation.
AB - The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range 10 < pT < 300 GeV. The measurement is performed using 139 fb-1 of LHC proton–proton collision data at √s = 13 TeV taken in Run 2 by the ATLAS detector. Charged pions originating from τ-lepton decays are used to provide a sample of high-pT isolated particles, where the composition is known, to test an energy regime that has not previously been probed by in situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by ∼ 2 % across a large part of the pT spectrum in the central region and underestimated by ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are ≲ 1 % for 15 < pT < 185 GeV in the central region. To investigate the source of the discrepancies, the width of the distribution of the ratio of calorimeter energy to track momentum, the energies per layer and response in the hadronic calorimeter are also compared between data and simulation.
UR - http://www.scopus.com/inward/record.url?scp=85134070625&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-022-10117-2
DO - 10.1140/epjc/s10052-022-10117-2
M3 - Article
AN - SCOPUS:85134070625
SN - 1434-6052
VL - 82
SP - 1
EP - 31
JO - European Physical Journal C
JF - European Physical Journal C
IS - 3
M1 - 223
ER -