Abstract
A new analytical technique using inductively coupled plasma-quadrupole mass spectrometry (ICPQMS) has been developed that produces permil-level precision in the measurement of uranium concentration ([U]) and isotopic composition (δ234U) in natural materials. A 233U-236U double spike method was used to correct for mass fractionation during analysis. To correct for ratio drifting, samples were bracketed by uranium standard measurements. A sensitivity of 6-7 × 108 cps/ppm was generated with a sample solution uptake rate of 30 mL/min. With a measurement time of 15-20 min, standards of 30-ng uranium produced a within-run precision better than 3%(±2 R.S.D.) for δ234U and better than 2%for [U]. Replicate measurements made on standards show that a between-run reproducibility of 3.5%for δ234U and 2% for [U] can be achieved. ICP-QMS data of δ234U and [U] in seawater, coral, and speleothem materials are consistent with the data measured by other ICP-MS and TIMS techniques. Advantages of the ICP-QMS method include low cost, easy maintenance, simple instrumental operation, and few sample preparation steps. Sample size requirements are small, such as 10-14 mg of coral material. The results demonstrate that this technique can be applied to natural samples with various matrices.
Original language | English |
---|---|
Article number | Q09005 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Geochemistry, Geophysics, Geosystems |
Volume | 7 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2006 |
Externally published | Yes |
Keywords
- δU
- ICP-QMS
- Natural uranium
- Permil-level precision