TY - JOUR
T1 - Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia
AU - Martley, E.
AU - Gulson, B. L.
AU - Pfeifer, H. -R.
PY - 2004/6/5
Y1 - 2004/6/5
N2 - Anthropogenic emissions of metals from sources such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of heavy metals in soils in the vicinity of the industrial complex of Port Kembla, NSW, Australia, which comprises a copper smelter, steelworks and associated industries. Soil samples (n=25) were collected at the depths of 0-5 and 5-20 cm, air dried and sieved to <2 mm. Aqua regia extractable amounts of As, Cr, Cu, Pb and Zn were analysed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Outliers were identified from background levels by statistical methods. Mean background levels at a depth of 0-5 cm were estimated at 3.2 mg/kg As, 12 mg/kg Cr, 49 mg/kg Cu, 20 mg/kg Pb and 42 mg/kg Zn. Outliers for elevated As and Cu values were mainly present within 4 km from the Port Kembla industrial complex, but high Pb at two sites and high Zn concentrations were found at six sites up to 23 km from Port Kembla. Chromium concentrations were not anomalous close to the industrial complex. There was no significant difference of metal concentrations at depths of 0-5 and 5-20 cm, except for Pb and Zn. Copper and As concentrations in the soils are probably related to the concentrations in the parent rock. From this investigation, the extent of the contamination emanating from the Port Kembla industrial complex is limited to 1-13 km, but most likely <4 km, depending on the element; the contamination at the greater distance may not originate from the industrial complex.
AB - Anthropogenic emissions of metals from sources such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of heavy metals in soils in the vicinity of the industrial complex of Port Kembla, NSW, Australia, which comprises a copper smelter, steelworks and associated industries. Soil samples (n=25) were collected at the depths of 0-5 and 5-20 cm, air dried and sieved to <2 mm. Aqua regia extractable amounts of As, Cr, Cu, Pb and Zn were analysed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Outliers were identified from background levels by statistical methods. Mean background levels at a depth of 0-5 cm were estimated at 3.2 mg/kg As, 12 mg/kg Cr, 49 mg/kg Cu, 20 mg/kg Pb and 42 mg/kg Zn. Outliers for elevated As and Cu values were mainly present within 4 km from the Port Kembla industrial complex, but high Pb at two sites and high Zn concentrations were found at six sites up to 23 km from Port Kembla. Chromium concentrations were not anomalous close to the industrial complex. There was no significant difference of metal concentrations at depths of 0-5 and 5-20 cm, except for Pb and Zn. Copper and As concentrations in the soils are probably related to the concentrations in the parent rock. From this investigation, the extent of the contamination emanating from the Port Kembla industrial complex is limited to 1-13 km, but most likely <4 km, depending on the element; the contamination at the greater distance may not originate from the industrial complex.
KW - smelter
KW - arsenic
KW - chromium
KW - copper
KW - lead
KW - zinc
KW - soils
KW - contamination
KW - background levels
KW - Port Kembla
UR - http://www.scopus.com/inward/record.url?scp=2442610444&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2003.11.012
DO - 10.1016/j.scitotenv.2003.11.012
M3 - Article
C2 - 15144782
AN - SCOPUS:2442610444
VL - 325
SP - 113
EP - 127
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
IS - 1-3
ER -