Metric-based auto-instructor for learning mixed data representation

Songlei Jian, Liang Hu, Longbing Cao, Kai Lu

Research output: Contribution to journalConference paperpeer-review

17 Citations (Scopus)

Abstract

Mixed data with both categorical and continuous features are ubiquitous in real-world applications. Learning a good representation of mixed data is critical yet challenging for further learning tasks. Existing methods for representing mixed data often overlook the heterogeneous coupling relationships between categorical and continuous features as well as the discrimination between objects. To address these issues, we propose an auto-instructive representation learning scheme to enable margin-enhanced distance metric learning for a discrimination-enhanced representation. Accordingly, we design a metric-based auto-instructor (MAI) model which consists of two collaborative instructors. Each instructor captures the feature-level couplings in mixed data with fully connected networks, and guides the infinite-margin metric learning for the peer instructor with a contrastive order. By feeding the learned representation into both partition-based and density-based clustering methods, our experiments on eight UCI datasets show highly significant learning performance improvement and much more distinguishable visualization outcomes over the baseline methods.

Original languageEnglish
Pages (from-to)3318-3325
Number of pages8
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume32
Issue number1
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: 2 Feb 20187 Feb 2018

Fingerprint

Dive into the research topics of 'Metric-based auto-instructor for learning mixed data representation'. Together they form a unique fingerprint.

Cite this