Microarray analysis of phosphate regulation in the marine cyanobacterium synechococcus sp. WH8102

Sasha G. Tetu, Bianca Brahamsha, Daniel A. Johnson, Vera Tai, Katherine Phillippy, Brian Palenik, Ian T. Paulsen

Research output: Contribution to journalArticle

74 Citations (Scopus)

Abstract

Primary productivity of open ocean environments, such as those inhabited by marine picocyanobacteria, is often limited by low inorganic phosphate (P). To observe how these organisms cope with P starvation, we constructed a full genome microarray for Synechococcus sp. WH8102 and compared differences in gene expression under P-replete and P-limited growth conditions, including both early P stress, during extracellular alkaline phosphatase induction, and late P stress. A total of 36 genes showed significant upregulation (log 2 fold) whereas 23 genes were highly downregulated at the early time point; however, these changes in expression were maintained during late P stress for only 5 of the upregulated genes. Knockout mutants were constructed for genes SYNW0947 and SYNW0948, comprising a two-component regulator hypothesized to have a key function in regulating P metabolism. A high degree of overlap in the sets of genes affected by P stress conditions and in the knockout mutants supports this hypothesis; however, there is some indication that other regulators may be involved in this response in Synechococcus sp. WH8102. Consistent with what has been observed in many other cyanobacteria, the Pho regulon of this strain is comprised largely of genes for alkaline phosphatases, P transport or P metabolism. Interestingly, however, the exact composition and arrangement of the Pho regulon appears highly variable in marine cyanobacteria.

Original languageEnglish
Pages (from-to)835-849
Number of pages15
JournalISME Journal
Volume3
Issue number7
DOIs
Publication statusPublished - Jul 2009

Fingerprint Dive into the research topics of 'Microarray analysis of phosphate regulation in the marine cyanobacterium synechococcus sp. WH8102'. Together they form a unique fingerprint.

Cite this