TY - GEN
T1 - Microgrid energy management system for academic building
AU - Tayab, Usman Bashir
AU - Lu, Junwei
AU - Yang, Fuwen
AU - Islam, Mojaharul
AU - Zia, Ali
AU - Hossain, Jahangir
PY - 2019
Y1 - 2019
N2 - In this paper, an optimal energy management system (EMS) for grid-connected microgrid is proposed. The gridconnected microgrid system comprises of photovoltaic (PV) panel, and battery as an energy storage unit. The optimal EMS is aimed to minimize the total operating cost of grid-connected microgrid for academic building. The feedforward neural network with improved salp swarm alogrithm based on weight factor is used to determine the 24-hours ahead data forecasting of load demand and PV power, while improved salp swarm alogrithm based on weight factor (WSSA) is used to perform the day-ahead optimal scheduling to control the power flow between PV, energy storage unit, load and main grid. The proposed microgrid EMS (MGEMS) is simulated using MATLAB/Simulink. The simulation result shows the effectiveness and validity of presented EMS with academic load.
AB - In this paper, an optimal energy management system (EMS) for grid-connected microgrid is proposed. The gridconnected microgrid system comprises of photovoltaic (PV) panel, and battery as an energy storage unit. The optimal EMS is aimed to minimize the total operating cost of grid-connected microgrid for academic building. The feedforward neural network with improved salp swarm alogrithm based on weight factor is used to determine the 24-hours ahead data forecasting of load demand and PV power, while improved salp swarm alogrithm based on weight factor (WSSA) is used to perform the day-ahead optimal scheduling to control the power flow between PV, energy storage unit, load and main grid. The proposed microgrid EMS (MGEMS) is simulated using MATLAB/Simulink. The simulation result shows the effectiveness and validity of presented EMS with academic load.
UR - http://www.scopus.com/inward/record.url?scp=85086311564&partnerID=8YFLogxK
U2 - 10.1109/AUPEC48547.2019.211931
DO - 10.1109/AUPEC48547.2019.211931
M3 - Conference proceeding contribution
SN - 9781728150444
SP - 1
EP - 5
BT - 2019 29th Australasian Universities Power Engineering Conference (AUPEC)
PB - Institute of Electrical and Electronics Engineers (IEEE)
CY - Piscataway, NJ
T2 - 2019 29th Australasian Universities Power Engineering Conference
Y2 - 26 November 2019 through 29 November 2019
ER -