Abstract
We report a comprehensive characterization of tunable continuous-wave (CW) and passive Q-switching laser performance of Dy-doped zirconium fluoride fiber emitting around 3 µm. The in-band pumped CW laser operation is investigated for pump wavelengths varying from 2.7 µm to 2.825 µm, for fiber lengths ranging from 0.4 m to 2 m, and for output coupling efficiency from 10% to 50%, leading to a maximum laser slope efficiency of 44% and a tuning range larger than 300 nm. With Findlay-Clay analysis and Rigrod analyses, optimal cavity parameters are retrieved, paving the way for further optimizations in performance. The passively Q-switched laser operation of Dy-doped fluoride fiber is achieved employing a semiconductor saturable absorber mirror for the first time, demonstrating a stable operation with a minimum pulse duration of 580 ns, a highest repetition frequency of 103 kHz and a pulse energy up to 300 nJ.
Original language | English |
---|---|
Pages (from-to) | 1502-1511 |
Number of pages | 10 |
Journal | Optical Materials Express |
Volume | 12 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2022 |